summaryrefslogtreecommitdiff
path: root/training/dtrain/pairs.h
diff options
context:
space:
mode:
authorPatrick Simianer <p@simianer.de>2015-02-01 22:32:40 +0100
committerPatrick Simianer <p@simianer.de>2015-02-01 22:32:40 +0100
commit160dbdfa96ae57df82bc33475578904e2cd23317 (patch)
treea0e768bb8f1bce1890fb9085675c4c9de1c7e109 /training/dtrain/pairs.h
parent139c07aa6ed318184873b895251a5e76c9b593a1 (diff)
dtrain: simplified pair generation
Diffstat (limited to 'training/dtrain/pairs.h')
-rw-r--r--training/dtrain/pairs.h114
1 files changed, 14 insertions, 100 deletions
diff --git a/training/dtrain/pairs.h b/training/dtrain/pairs.h
index fd08be8c..dea0dabc 100644
--- a/training/dtrain/pairs.h
+++ b/training/dtrain/pairs.h
@@ -1,140 +1,54 @@
-#ifndef _DTRAIN_PAIRSAMPLING_H_
-#define _DTRAIN_PAIRSAMPLING_H_
+#ifndef _DTRAIN_PAIRS_H_
+#define _DTRAIN_PAIRS_H_
namespace dtrain
{
-
bool
-accept_pair(score_t a, score_t b, score_t threshold)
-{
- if (fabs(a - b) < threshold) return false;
- return true;
-}
-
-bool
-cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b)
+CmpHypsByScore(ScoredHyp a, ScoredHyp b)
{
return a.score > b.score;
}
-inline void
-all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float _unused=1)
-{
- sort(s->begin(), s->end(), cmp_hyp_by_score_d);
- unsigned sz = s->size();
- bool b = false;
- unsigned count = 0;
- for (unsigned i = 0; i < sz-1; i++) {
- for (unsigned j = i+1; j < sz; j++) {
- if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
- if (threshold > 0) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
- training.push_back(make_pair((*s)[i], (*s)[j]));
- } else {
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- if (++count == max) {
- b = true;
- break;
- }
- }
- if (b) break;
- }
-}
-
/*
* multipartite ranking
* sort (descending) by bleu
- * compare top X to middle Y and low X
+ * compare top X (hi) to middle Y (med) and low X (lo)
* cmp middle Y to low X
*/
-
inline void
-partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool misranked_only, float hi_lo)
+MakePairs(vector<ScoredHyp>* s,
+ vector<pair<ScoredHyp,ScoredHyp> >& training,
+ bool misranked_only,
+ float hi_lo)
{
unsigned sz = s->size();
if (sz < 2) return;
- sort(s->begin(), s->end(), cmp_hyp_by_score_d);
+ sort(s->begin(), s->end(), CmpHypsByScore);
unsigned sep = round(sz*hi_lo);
+ // hi vs. med vs. low
unsigned sep_hi = sep;
if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi;
else sep_hi = 1;
- bool b = false;
- unsigned count = 0;
for (unsigned i = 0; i < sep_hi; i++) {
for (unsigned j = sep_hi; j < sz; j++) {
if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
- if (threshold > 0) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
- training.push_back(make_pair((*s)[i], (*s)[j]));
- } else {
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- if (++count == max) {
- b = true;
- break;
- }
+ if ((*s)[i].score != (*s)[j].score)
+ training.push_back(make_pair((*s)[i], (*s)[j]));
}
- if (b) break;
}
+ // med vs. low
unsigned sep_lo = sz-sep;
while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo;
for (unsigned i = sep_hi; i < sep_lo; i++) {
for (unsigned j = sep_lo; j < sz; j++) {
if (misranked_only && !((*s)[i].model <= (*s)[j].model)) continue;
- if (threshold > 0) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
- training.push_back(make_pair((*s)[i], (*s)[j]));
- } else {
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- if (++count == max) return;
- }
- }
-}
-
-/*
- * pair sampling as in
- * 'Tuning as Ranking' (Hopkins & May, 2011)
- * count = max (5000)
- * threshold = 5% BLEU (0.05 for param 3)
- * cut = top 10%
- */
-bool
-_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b)
-{
- return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score));
-}
-inline void
-PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, bool _unused=false, float _also_unused=0)
-{
- sort(s->begin(), s->end(), cmp_hyp_by_score_d);
- unsigned max_count = max, count = 0, sz = s->size();
- bool b = false;
- for (unsigned i = 0; i < sz-1; i++) {
- for (unsigned j = i+1; j < sz; j++) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) {
+ if ((*s)[i].score != (*s)[j].score)
training.push_back(make_pair((*s)[i], (*s)[j]));
- if (++count == max_count) {
- b = true;
- break;
- }
- }
}
- if (b) break;
- }
- if (training.size() > max/10) {
- sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d);
- training.erase(training.begin()+(max/10), training.end());
}
- return;
}
-
} // namespace
#endif