summaryrefslogtreecommitdiff
path: root/sa-extract/rulefactory.pyx
diff options
context:
space:
mode:
authorKenneth Heafield <github@kheafield.com>2012-08-03 07:46:54 -0400
committerKenneth Heafield <github@kheafield.com>2012-08-03 07:46:54 -0400
commitbe1ab0a8937f9c5668ea5e6c31b798e87672e55e (patch)
treea13aad60ab6cced213401bce6a38ac885ba171ba /sa-extract/rulefactory.pyx
parente5d6f4ae41009c26978ecd62668501af9762b0bc (diff)
parent9fe0219562e5db25171cce8776381600ff9a5649 (diff)
Merge branch 'master' of github.com:redpony/cdec
Diffstat (limited to 'sa-extract/rulefactory.pyx')
-rw-r--r--sa-extract/rulefactory.pyx2360
1 files changed, 0 insertions, 2360 deletions
diff --git a/sa-extract/rulefactory.pyx b/sa-extract/rulefactory.pyx
deleted file mode 100644
index 20ea80d2..00000000
--- a/sa-extract/rulefactory.pyx
+++ /dev/null
@@ -1,2360 +0,0 @@
-# Pyrex implementation of the algorithms described in
-# Lopez, EMNLP-CoNLL 2007
-# Much faster than the Python numbers reported there.
-# Note to reader: this code is closer to C than Python
-import sys
-import sym
-import log
-import rule
-import monitor
-import cintlist
-import csuf
-import cdat
-import cveb
-import precomputation
-import gc
-import cn
-import sgml
-
-cimport cmath
-cimport csuf
-cimport cdat
-cimport cintlist
-cimport rule
-cimport cveb
-cimport precomputation
-cimport calignment
-
-from libc.stdlib cimport malloc, realloc, free
-from libc.string cimport memset, memcpy
-from libc.math cimport fmod, ceil, floor
-
-cdef int PRECOMPUTE
-cdef int MERGE
-cdef int BAEZA_YATES
-
-PRECOMPUTE = 0
-MERGE = 1
-BAEZA_YATES = 2
-
-#cdef int node_count
-#node_count = 0
-
-cdef class TrieNode:
- cdef public children
- #cdef int id
-
- def __init__(self):
- self.children = {}
- #self.id = node_count
- #node_count += 1
-
-
-cdef class ExtendedTrieNode(TrieNode):
- cdef public phrase
- cdef public phrase_location
- cdef public suffix_link
-
- def __init__(self, phrase=None, phrase_location=None, suffix_link=None):
- TrieNode.__init__(self)
- self.phrase = phrase
- self.phrase_location = phrase_location
- self.suffix_link = suffix_link
-
-
-cdef class TrieTable:
- cdef public int extended
- cdef public int count
- cdef public root
- def __cinit__(self, extended=False):
- self.count = 0
- self.extended = extended
- if extended:
- self.root = ExtendedTrieNode()
- else:
- self.root = TrieNode()
-
-# linked list structure for storing matches in BaselineRuleFactory
-cdef struct match_node:
- int* match
- match_node* next
-
-cdef class BaselineRuleFactory:
-
- cdef grammar, context_manager
- cdef int max_terminals, max_nonterminals
- cdef int max_initial_size, train_max_initial_size
- cdef int min_gap_size, train_min_gap_size
- cdef int category
- cdef int visit
- cdef float intersect_time, extract_time
- cdef ruleFile, timingFile
- cdef int* last_visit1
- cdef int* last_visit2
- cdef match_node** intersector1
- cdef match_node** intersector2
- cdef csuf.SuffixArray sa
- cdef cintlist.CIntList sent_id
-
- def input(self, fwords):
- flen = len(fwords)
- start_time = monitor.cpu()
- self.intersect_time = 0.0
- self.extract_time = 0.0
-
- pyro_phrase_count = 0
- hiero_phrase_count = 0
-
- frontier = []
- for i in xrange(len(fwords)):
- frontier.append((i, (), False))
-
- while len(frontier) > 0:
- this_iter_intersect_time = self.intersect_time
- new_frontier = []
- for i, prefix, is_shadow_path in frontier:
-
- word_id = fwords[i][0][0]
- #print "word_id = %i" % word_id
- phrase = prefix + (word_id,)
- str_phrase = map(sym.tostring, phrase)
- hiero_phrase = rule.Phrase(phrase)
-
- #log.writeln("pos %2d, '%s'" % (i, hiero_phrase))
- self.lookup(hiero_phrase)
- if hiero_phrase.arity() == 0:
- pyro_phrase_count = pyro_phrase_count + 1
- else:
- hiero_phrase_count = hiero_phrase_count + 1
-
- if len(phrase) - hiero_phrase.arity() < self.max_terminals and i+1 < len(fwords):
- new_frontier.append((i+1, phrase, is_shadow_path))
- if hiero_phrase.arity() < self.max_nonterminals:
- xcat = sym.setindex(self.category, hiero_phrase.arity()+1)
- for j in xrange(i+1+self.min_gap_size, min(i+self.max_initial_size, len(fwords))):
- new_frontier.append((j, phrase+(xcat,), is_shadow_path))
- log.writeln("This iteration intersect time = %f" % (self.intersect_time - this_iter_intersect_time))
- frontier = new_frontier
- stop_time = monitor.cpu()
- log.writeln("COUNT %d %d" % (pyro_phrase_count, hiero_phrase_count))
-
-
- def lookup(self, phrase):
- cdef int j, g, start, stop, sent_id, num_ranges, arity
- cdef match_node** cur_intersector
- cdef match_node** next_intersector
- cdef match_node** tmp_intersector
- cdef match_node* node
- cdef match_node* cur_node
- cdef match_node* prev_node
- cdef match_node** node_ptr
- cdef int* cur_visit
- cdef int* next_visit
- cdef int* tmp_visit
- cdef int* chunklen
-
- #print "\n\nLOOKUP\n\n"
- ranges = []
- sizes = []
- arity = phrase.arity()
- chunklen = <int *> malloc(arity*sizeof(int))
- for i from 0 <= i < arity+1:
- chunk = phrase.getchunk(i)
- chunklen[i] = len(chunk)
- sa_range = None
- phr = ()
- for offset, word_id in enumerate(chunk):
- word = sym.tostring(word_id)
- sa_range = self.context_manager.fsarray.lookup(word, offset, sa_range[0], sa_range[1])
- if sa_range is None:
- #log.writeln("Returned for phrase %s" % rule.Phrase(phr))
- return
- #log.writeln("Found range %s for phrase %s" % (sa_range, rule.Phrase(phr)))
- ranges.append(sa_range)
- sizes.append(sa_range[1]-sa_range[0])
- if phrase.arity() == 0:
- return
-
- cur_intersector = self.intersector1
- next_intersector = self.intersector2
- cur_visit = self.last_visit1
- next_visit = self.last_visit2
-
- num_ranges = len(ranges)
- for i from 0 <= i < num_ranges:
- sa_range = ranges[i]
- start_time = monitor.cpu()
- self.visit = self.visit + 1
- intersect_count = 0
-
- start = sa_range[0]
- stop = sa_range[1]
- for j from start <= j < stop:
- g = self.sa.sa.arr[j]
- sent_id = self.sent_id.arr[g]
- if i==0:
- if next_visit[sent_id] != self.visit:
- # clear intersector
- node = next_intersector[sent_id]
- next_intersector[sent_id] = NULL
- while node != NULL:
- prev_node = node
- node = node.next
- free(prev_node.match)
- free(prev_node)
- next_visit[sent_id] = self.visit
- node_ptr = &(next_intersector[sent_id])
- while node_ptr[0] != NULL:
- node_ptr = &(node_ptr[0].next)
- node_ptr[0] = <match_node*> malloc(sizeof(match_node))
- node_ptr[0].match = <int *> malloc(sizeof(int))
- node_ptr[0].match[0] = g
- node_ptr[0].next = NULL
- intersect_count = intersect_count + 1
- else:
- if cur_visit[sent_id] == self.visit-1:
- cur_node = cur_intersector[sent_id]
- while cur_node != NULL:
- if g - cur_node.match[0] + chunklen[i] <= self.train_max_initial_size and g - cur_node.match[i-1] - chunklen[i-1] >= self.train_min_gap_size:
- if next_visit[sent_id] != self.visit:
- # clear intersector -- note that we only do this if we've got something to put there
- node = next_intersector[sent_id]
- next_intersector[sent_id] = NULL
- while node != NULL:
- prev_node = node
- node = node.next
- free(prev_node.match)
- free(prev_node)
- next_visit[sent_id] = self.visit
- node_ptr = &(next_intersector[sent_id])
- while node_ptr[0] != NULL:
- node_ptr = &(node_ptr[0].next)
- node_ptr[0] = <match_node*> malloc(sizeof(match_node))
- node_ptr[0].match = <int *> malloc((i+1) * sizeof(int))
- memcpy(node_ptr[0].match, cur_node.match, i*sizeof(int))
- node_ptr[0].match[i] = g
- node_ptr[0].next = NULL
- intersect_count = intersect_count + 1
- cur_node = cur_node.next
- tmp_intersector = cur_intersector
- cur_intersector = next_intersector
- next_intersector = tmp_intersector
-
- tmp_visit = cur_visit
- cur_visit = next_visit
- next_visit = tmp_visit
-
- intersect_time = monitor.cpu() - start_time
- if i > 0:
- log.writeln("INT %d %d %d %d %f baseline" %
- (arity, prev_intersect_count, sa_range[1]-sa_range[0],
- intersect_count, intersect_time))
- if intersect_count == 0:
- return None
- prev_intersect_count = intersect_count
- free(chunklen)
-
-
-
- def __init__(self, max_terminals=5, max_nonterminals=2,
- max_initial_size=10, train_max_initial_size=10,
- min_gap_size=1, train_min_gap_size=2,
- category='[PHRASE]', grammar=None,
- ruleFile=None, timingFile=None):
- self.grammar = grammar
- self.max_terminals = max_terminals
- self.max_nonterminals = max_nonterminals
- self.max_initial_size = max_initial_size
- self.train_max_initial_size = train_max_initial_size
- self.min_gap_size = min_gap_size
- self.train_min_gap_size = train_min_gap_size
- self.category = sym.fromstring(category)
- self.ruleFile = ruleFile
- self.timingFile = timingFile
- self.visit = 0
-
-
- def registerContext(self, context_manager):
- cdef int num_sents
- self.context_manager = context_manager
- self.sa = context_manager.fsarray
- self.sent_id = self.sa.darray.sent_id
-
- num_sents = len(self.sa.darray.sent_index)
- self.last_visit1 = <int *> malloc(num_sents * sizeof(int))
- memset(self.last_visit1, 0, num_sents * sizeof(int))
-
- self.last_visit2 = <int *> malloc(num_sents * sizeof(int))
- memset(self.last_visit2, 0, num_sents * sizeof(int))
-
- self.intersector1 = <match_node **> malloc(num_sents * sizeof(match_node*))
- memset(self.intersector1, 0, num_sents * sizeof(match_node*))
-
- self.intersector2 = <match_node **> malloc(num_sents * sizeof(match_node*))
- memset(self.intersector2, 0, num_sents * sizeof(match_node*))
-
-
-# encodes information needed to find a (hierarchical) phrase
-# in the text. If phrase is contiguous, that's just a range
-# in the suffix array; if discontiguous, it is the set of
-# actual locations (packed into an array)
-cdef class PhraseLocation:
- cdef int sa_low
- cdef int sa_high
- cdef int arr_low
- cdef int arr_high
- cdef cintlist.CIntList arr
- cdef int num_subpatterns
-
- # returns true if sent_id is contained
- cdef int contains(self, int sent_id):
- return 1
-
- def __init__(self, sa_low=-1, sa_high=-1, arr_low=-1, arr_high=-1, arr=None, num_subpatterns=1):
- self.sa_low = sa_low
- self.sa_high = sa_high
- self.arr_low = arr_low
- self.arr_high = arr_high
- self.arr = arr
- self.num_subpatterns = num_subpatterns
-
-
-
-cdef class Sampler:
- '''A Sampler implements a logic for choosing
- samples from a population range'''
-
- cdef int sampleSize
- cdef context_manager
- cdef cintlist.CIntList sa
-
- def __init__(self, sampleSize=0):
- self.sampleSize = sampleSize
- if sampleSize > 0:
- log.writeln("Sampling strategy: uniform, max sample size = %d" % sampleSize, 1)
- else:
- log.writeln("Sampling strategy: no sampling", 1)
-
- def registerContext(self, context_manager):
- self.context_manager = context_manager
- self.sa = (<csuf.SuffixArray> context_manager.fsarray).sa
-
-
- def sample(self, PhraseLocation phrase_location):
- '''Returns a sample of the locations for
- the phrase. If there are less than self.sampleSize
- locations, return all of them; otherwise, return
- up to self.sampleSize locations. In the latter case,
- we choose to sample UNIFORMLY -- that is, the locations
- are chosen at uniform intervals over the entire set, rather
- than randomly. This makes the algorithm deterministic, which
- is good for things like MERT'''
- cdef cintlist.CIntList sample
- cdef double i, stepsize
- cdef int num_locations, val, j
-
- sample = cintlist.CIntList()
- if phrase_location.arr is None:
- num_locations = phrase_location.sa_high - phrase_location.sa_low
- if self.sampleSize == -1 or num_locations <= self.sampleSize:
- sample._extend_arr(self.sa.arr + phrase_location.sa_low, num_locations)
- else:
- stepsize = float(num_locations)/float(self.sampleSize)
- i = phrase_location.sa_low
- while i < phrase_location.sa_high and sample.len < self.sampleSize:
- '''Note: int(i) not guaranteed to have the desired
- effect, according to the python documentation'''
- if fmod(i,1.0) > 0.5:
- val = int(ceil(i))
- else:
- val = int(floor(i))
- sample._append(self.sa.arr[val])
- i = i + stepsize
- else:
- num_locations = (phrase_location.arr_high - phrase_location.arr_low) / phrase_location.num_subpatterns
- if self.sampleSize == -1 or num_locations <= self.sampleSize:
- sample = phrase_location.arr
- else:
- stepsize = float(num_locations)/float(self.sampleSize)
- i = phrase_location.arr_low
- while i < num_locations and sample.len < self.sampleSize * phrase_location.num_subpatterns:
- '''Note: int(i) not guaranteed to have the desired
- effect, according to the python documentation'''
- if fmod(i,1.0) > 0.5:
- val = int(ceil(i))
- else:
- val = int(floor(i))
- j = phrase_location.arr_low + (val*phrase_location.num_subpatterns)
- sample._extend_arr(phrase_location.arr.arr + j, phrase_location.num_subpatterns)
- i = i + stepsize
- return sample
-
-
-cdef long nGramCount(PhraseLocation loc):
- return (loc.arr_high - loc.arr_low)/ loc.num_subpatterns
-
-
-# struct used to encapsulate a single matching
-cdef struct Matching:
- int* arr
- int start
- int end
- int sent_id
- int size
-
-
-cdef void assign_matching(Matching* m, int* arr, int start, int step, int* sent_id_arr):
- m.arr = arr
- m.start = start
- m.end = start + step
- m.sent_id = sent_id_arr[arr[start]]
- m.size = step
-
-
-cdef int* append_combined_matching(int* arr, Matching* loc1, Matching* loc2,
- int offset_by_one, int num_subpatterns, int* result_len):
- cdef int i, new_len
-
- new_len = result_len[0] + num_subpatterns
- arr = <int*> realloc(arr, new_len*sizeof(int))
-
- for i from 0 <= i < loc1.size:
- arr[result_len[0]+i] = loc1.arr[loc1.start+i]
- if num_subpatterns > loc1.size:
- arr[new_len-1] = loc2.arr[loc2.end-1]
- result_len[0] = new_len
- return arr
-
-
-cdef int* extend_arr(int* arr, int* arr_len, int* appendix, int appendix_len):
- cdef int new_len
-
- new_len = arr_len[0] + appendix_len
- arr = <int*> realloc(arr, new_len*sizeof(int))
- memcpy(arr+arr_len[0], appendix, appendix_len*sizeof(int))
- arr_len[0] = new_len
- return arr
-
-
-#cdef matching2str(Matching* m):
-# cdef int i
-# cdef result
-
-# result = "("
-# for i from m.start <= i < m.end:
-# result = result + str(m.arr[i]) + " "
-# result = result + ")"
-# return result
-
-
-cdef int median(int low, int high, int step):
- return low + (((high - low)/step)/2)*step
-
-
-cdef void findComparableMatchings(int low, int high, int* arr, int step, int loc, int* loc_minus, int* loc_plus):
- # Returns (minus, plus) indices for the portion of the array
- # in which all matchings have the same first index as the one
- # starting at loc
- loc_plus[0] = loc + step
- while loc_plus[0] < high and arr[loc_plus[0]] == arr[loc]:
- loc_plus[0] = loc_plus[0] + step
- loc_minus[0] = loc
- while loc_minus[0]-step >= low and arr[loc_minus[0]-step] == arr[loc]:
- loc_minus[0] = loc_minus[0] - step
-
-
-cdef class HieroCachingRuleFactory:
- '''This RuleFactory implements a caching
- method using TrieTable, which makes phrase
- generation somewhat speedier -- phrases only
- need to be extracted once (however, it is
- quite possible they need to be scored
- for each input sentence, for contextual models)'''
-
- cdef rules, grammar, context_manager
-
- cdef int max_chunks
- cdef int max_target_chunks
- cdef int max_length
- cdef int max_target_length
- cdef int max_nonterminals
- cdef int max_initial_size
- cdef int train_max_initial_size
- cdef int min_gap_size
- cdef int train_min_gap_size
- cdef int category
-
- cdef cacheBetweenSents
- cdef precomputed_index
- cdef precomputed_collocations
- cdef precompute_file
- cdef max_rank
- cdef int precompute_rank, precompute_secondary_rank
- cdef useBaezaYates
- cdef use_index
- cdef use_collocations
- cdef float by_slack_factor
-
- cdef per_sentence_grammar
- cdef rule_filehandler
- cdef rule_file
- cdef pruned_rule_file
- cdef extract_file
- cdef sample_file
- cdef search_file
- cdef timingFile
- cdef log_int_stats
- cdef prev_norm_prefix
- cdef float intersect_time, extract_time
- cdef csuf.SuffixArray fsa
- cdef cdat.DataArray fda
- cdef cdat.DataArray eda
-
- cdef calignment.Alignment alignment
- cdef cintlist.CIntList eid2symid
- cdef cintlist.CIntList fid2symid
- cdef int tight_phrases
- cdef int require_aligned_terminal
- cdef int require_aligned_chunks
-
- cdef cintlist.CIntList findexes
- cdef cintlist.CIntList findexes1
-
- cdef int excluded_sent_id # exclude a sentence id
-
- def __init__(self,
- alignment=None, # compiled alignment object (REQUIRED)
- by_slack_factor=1.0, # parameter for double-binary search; doesn't seem to matter much
- category="[PHRASE]", # name of generic nonterminal used by Hiero
- cacheBetweenSents=False, # prevent flushing of tree between sents; use carefully or you'll run out of memory
- extract_file=None, # print raw extracted rules to this file
- grammar=None, # empty grammar object -- must be supplied from outside (REQUIRED)
- log_int_stats=False, # prints timing data on intersections to stderr
- max_chunks=None, # maximum number of contiguous chunks of terminal symbols in RHS of a rule. If None, defaults to max_nonterminals+1
- max_initial_size=10, # maximum span of a grammar rule in TEST DATA
- max_length=5, # maximum number of symbols (both T and NT) allowed in a rule
- max_nonterminals=2, # maximum number of nonterminals allowed in a rule (set >2 at your own risk)
- max_target_chunks=None, # maximum number of contiguous chunks of terminal symbols in target-side RHS of a rule. If None, defaults to max_nonterminals+1
- max_target_length=None, # maximum number of target side symbols (both T and NT) allowed in a rule. If None, defaults to max_initial_size
- min_gap_size=2, # minimum span of a nonterminal in the RHS of a rule in TEST DATA
- precompute_file=None, # filename of file containing precomputed collocations
- precompute_secondary_rank=20, # maximum frequency rank of patterns used to compute triples (don't set higher than 20).
- precompute_rank=100, # maximum frequency rank of patterns used to compute collocations (no need to set higher than maybe 200-300)
- pruned_rule_file=None, # if specified, pruned grammars will be written to this filename
- require_aligned_terminal=True, # require extracted rules to have at least one aligned word
- require_aligned_chunks=False, # require each contiguous chunk of extracted rules to have at least one aligned word
- per_sentence_grammar=True, # generate grammar files for each input segment
- rule_file=None, # UNpruned grammars will be written to this filename
- sample_file=None, # Sampling statistics will be written to this filename
- search_file=None, # lookup statistics will be written to this filename
- train_max_initial_size=10, # maximum span of a grammar rule extracted from TRAINING DATA
- train_min_gap_size=2, # minimum span of an RHS nonterminal in a rule extracted from TRAINING DATA
- tight_phrases=False, # True if phrases should be tight, False otherwise (False == slower but better results)
- timingFile=None, # timing statistics will be written to this filename
- useBaezaYates=True, # True to require use of double-binary alg, false otherwise
- use_collocations=True, # True to enable used of precomputed collocations
- use_index=True # True to enable use of precomputed inverted indices
- ):
- '''Note: we make a distinction between the min_gap_size
- and max_initial_size used in test and train. The latter
- are represented by train_min_gap_size and train_max_initial_size,
- respectively. This is because Chiang's model does not require
- them to be the same, therefore we don't either.'''
- self.rules = TrieTable(True) # cache
- self.rules.root = ExtendedTrieNode(phrase_location=PhraseLocation())
- self.grammar = grammar
- if alignment is None:
- raise Exception("Must specify an alignment object")
- self.alignment = alignment
-
- self.excluded_sent_id = -1
-
- # grammar parameters and settings
- # NOTE: setting max_nonterminals > 2 is not currently supported in Hiero
- self.max_length = max_length
- self.max_nonterminals = max_nonterminals
- self.max_initial_size = max_initial_size
- self.train_max_initial_size = train_max_initial_size
- self.min_gap_size = min_gap_size
- self.train_min_gap_size = train_min_gap_size
- self.category = sym.fromstring(category)
-
- if max_chunks is None:
- self.max_chunks = self.max_nonterminals + 1
- else:
- self.max_chunks = max_chunks
-
- if max_target_chunks is None:
- self.max_target_chunks = self.max_nonterminals + 1
- else:
- self.max_target_chunks = max_target_chunks
-
- if max_target_length is None:
- self.max_target_length = max_initial_size
- else:
- self.max_target_length = max_target_length
-
- # algorithmic parameters and settings
- self.cacheBetweenSents = not per_sentence_grammar
- self.precomputed_collocations = {}
- self.precomputed_index = {}
- self.use_index = use_index
- self.use_collocations = use_collocations
- self.max_rank = {}
- self.precompute_file = precompute_file
- self.precompute_rank = precompute_rank
- self.precompute_secondary_rank = precompute_secondary_rank
- self.useBaezaYates = useBaezaYates
- self.by_slack_factor = by_slack_factor
- if tight_phrases:
- self.tight_phrases = 1
- else:
- self.tight_phrases = 0
-
- if require_aligned_chunks:
- # one condition is a stronger version of the other.
- self.require_aligned_chunks = 1
- self.require_aligned_terminal = 1
- elif require_aligned_terminal:
- self.require_aligned_chunks = 0
- self.require_aligned_terminal = 1
- else:
- self.require_aligned_chunks = 0
- self.require_aligned_terminal = 0
-
-
- self.per_sentence_grammar = per_sentence_grammar
- if not self.per_sentence_grammar:
- self.rule_filehandler = open(rule_file, "w")
- # diagnostics
- #if rule_file is None:
- # self.rule_file = None
- self.rule_file = rule_file
- if extract_file is None:
- self.extract_file = None
- else:
- self.extract_file = open(extract_file, "w")
- if sample_file is None:
- self.sample_file = None
- else:
- self.sample_file = open(sample_file, "w")
- if search_file is None:
- self.search_file = None
- else:
- self.search_file = open(search_file, "w")
- self.pruned_rule_file = pruned_rule_file
- self.timingFile = timingFile
- self.log_int_stats = log_int_stats
- self.prev_norm_prefix = ()
-
- self.findexes = cintlist.CIntList(initial_len=10)
- self.findexes1 = cintlist.CIntList(initial_len=10)
-
- def registerContext(self, context_manager):
- '''This gives the RuleFactory access to the Context object.
- Here we also use it to precompute the most expensive intersections
- in the corpus quickly.'''
- self.context_manager = context_manager
- self.fsa = context_manager.fsarray
- self.fda = self.fsa.darray
- self.eda = context_manager.edarray
- self.fid2symid = self.set_idmap(self.fda)
- self.eid2symid = self.set_idmap(self.eda)
- self.precompute()
-
- cdef set_idmap(self, cdat.DataArray darray):
- cdef int word_id, new_word_id, N
- cdef cintlist.CIntList idmap
-
- N = len(darray.id2word)
- idmap = cintlist.CIntList(initial_len=N)
- for word_id from 0 <= word_id < N:
- new_word_id = sym.fromstring(darray.id2word[word_id], terminal=True)
- idmap.arr[word_id] = new_word_id
- return idmap
-
-
- def pattern2phrase(self, pattern):
- # pattern is a tuple, which we must convert to a hiero rule.Phrase
- result = ()
- arity = 0
- for word_id in pattern:
- if word_id == -1:
- arity = arity + 1
- new_id = sym.setindex(self.category, arity)
- else:
- new_id = sym.fromstring(self.fda.id2word[word_id])
- result = result + (new_id,)
- return rule.Phrase(result)
-
- def pattern2phrase_plus(self, pattern):
- # returns a list containing both the pattern, and pattern
- # suffixed/prefixed with the NT category.
- patterns = []
- result = ()
- arity = 0
- for word_id in pattern:
- if word_id == -1:
- arity = arity + 1
- new_id = sym.setindex(self.category, arity)
- else:
- new_id = sym.fromstring(self.fda.id2word[word_id])
- result = result + (new_id,)
- patterns.append(rule.Phrase(result))
- patterns.append(rule.Phrase(result + (sym.setindex(self.category, 1),)))
- patterns.append(rule.Phrase((sym.setindex(self.category, 1),) + result))
- return patterns
-
- def precompute(self):
- cdef precomputation.Precomputation pre
-
- if self.precompute_file is not None:
- start_time = monitor.cpu()
- log.write("Reading precomputed data from file %s... " % self.precompute_file, 1)
- pre = precomputation.Precomputation(self.precompute_file, from_binary=True)
- # check parameters of precomputation -- some are critical and some are not
- if pre.max_nonterminals != self.max_nonterminals:
- log.writeln("\nWARNING: Precomputation done with max nonterminals %d, decoder uses %d" % (pre.max_nonterminals, self.max_nonterminals))
- if pre.max_length != self.max_length:
- log.writeln("\nWARNING: Precomputation done with max terminals %d, decoder uses %d" % (pre.max_length, self.max_length))
- if pre.train_max_initial_size != self.train_max_initial_size:
- log.writeln("\nERROR: Precomputation done with max initial size %d, decoder uses %d" % (pre.train_max_initial_size, self.train_max_initial_size))
- raise Exception("Parameter mismatch with precomputed data")
- if pre.train_min_gap_size != self.train_min_gap_size:
- log.writeln("\nERROR: Precomputation done with min gap size %d, decoder uses %d" % (pre.train_min_gap_size, self.train_min_gap_size))
- raise Exception("Parameter mismatch with precomputed data")
- log.writeln("done.", 1)
- if self.use_index:
- log.write("Converting %d hash keys on precomputed inverted index... " % (len(pre.precomputed_index)), 1)
- for pattern, arr in pre.precomputed_index.iteritems():
- phrases = self.pattern2phrase_plus(pattern)
- for phrase in phrases:
- self.precomputed_index[phrase] = arr
- log.writeln("done.", 1)
- if self.use_collocations:
- log.write("Converting %d hash keys on precomputed collocations... " % (len(pre.precomputed_collocations)), 1)
- for pattern, arr in pre.precomputed_collocations.iteritems():
- phrase = self.pattern2phrase(pattern)
- self.precomputed_collocations[phrase] = arr
- log.writeln("done.", 1)
- stop_time = monitor.cpu()
- log.writeln("Processing precomputations took %f seconds" % (stop_time - start_time), 1)
-
-
- def getPrecomputedCollocation(self, phrase):
- if phrase in self.precomputed_collocations:
- arr = self.precomputed_collocations[phrase]
- return PhraseLocation(arr=arr, arr_low=0, arr_high=len(arr), num_subpatterns=phrase.arity()+1)
- return None
-
-
- cdef int* baezaYatesHelper(self, int low1, int high1, int* arr1, int step1,
- int low2, int high2, int* arr2, int step2,
- int offset_by_one, int len_last, int num_subpatterns, int* result_len):
- cdef int i1, i2, j1, j2, med1, med2, med1_plus, med1_minus, med2_minus, med2_plus
- cdef int d_first, qsetsize, dsetsize, tmp, search_low, search_high
- cdef int med_result_len, low_result_len, high_result_len
- cdef long comparison
- cdef int* result
- cdef int* low_result
- cdef int* med_result
- cdef int* high_result
- cdef Matching loc1, loc2
-
- result = <int*> malloc(0*sizeof(int*))
-# log.writeln("%sBY: [%d, %d, %d] [%d, %d, %d]" % (pad, low1, high1, step1, low2, high2, step2,), 5)
-
- d_first = 0
- if high1 - low1 > high2 - low2:
-# log.writeln("%sD first" % (pad), 5)
- d_first = 1
-# else:
-# log.writeln("%sQ first" % (pad), 5)
-
-# '''First, check to see if we are at any of the
-# recursive base cases'''
-#
-# '''Case 1: one of the sets is empty'''
- if low1 >= high1 or low2 >= high2:
-# log.writeln("%sRETURN: set is empty" % (pad), 5)
- return result
-
-# '''Case 2: sets are non-overlapping'''
- assign_matching(&loc1, arr1, high1-step1, step1, self.fda.sent_id.arr)
- assign_matching(&loc2, arr2, low2, step2, self.fda.sent_id.arr)
- if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == -1:
-# log.writeln("%s %s < %s" % (pad, tuple(arr1[high1-step1:high1]), tuple(arr2[low2:low2+step2])),5)
-# log.writeln("%sRETURN: non-overlapping sets" % (pad), 5)
- return result
-
- assign_matching(&loc1, arr1, low1, step1, self.fda.sent_id.arr)
- assign_matching(&loc2, arr2, high2-step2, step2, self.fda.sent_id.arr)
- if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == 1:
-# log.writeln("%s %s > %s" % (pad, tuple(arr1[low1:low1+step1]), tuple(arr2[high2-step2:high2])),5)
-# log.writeln("%sRETURN: non-overlapping sets" % (pad), 5)
- return result
-
- # Case 3: query set and data set do not meet size mismatch constraints;
- # We use mergesort instead in this case
- qsetsize = (high1-low1) / step1
- dsetsize = (high2-low2) / step2
- if d_first:
- tmp = qsetsize
- qsetsize = dsetsize
- dsetsize = tmp
-
- if self.by_slack_factor * qsetsize * cmath.log(dsetsize) / cmath.log(2) > dsetsize:
- free(result)
- return self.mergeHelper(low1, high1, arr1, step1, low2, high2, arr2, step2, offset_by_one, len_last, num_subpatterns, result_len)
-
- # binary search. There are two flavors, depending on
- # whether the queryset or dataset is first
- if d_first:
- med2 = median(low2, high2, step2)
- assign_matching(&loc2, arr2, med2, step2, self.fda.sent_id.arr)
-
- search_low = low1
- search_high = high1
- while search_low < search_high:
- med1 = median(search_low, search_high, step1)
- findComparableMatchings(low1, high1, arr1, step1, med1, &med1_minus, &med1_plus)
- comparison = self.compareMatchingsSet(med1_minus, med1_plus, arr1, step1, &loc2, offset_by_one, len_last)
- if comparison == -1:
- search_low = med1_plus
- elif comparison == 1:
- search_high = med1_minus
- else:
- break
- else:
- med1 = median(low1, high1, step1)
- findComparableMatchings(low1, high1, arr1, step1, med1, &med1_minus, &med1_plus)
-
- search_low = low2
- search_high = high2
- while search_low < search_high:
- med2 = median(search_low, search_high, step2)
- assign_matching(&loc2, arr2, med2, step2, self.fda.sent_id.arr)
- comparison = self.compareMatchingsSet(med1_minus, med1_plus, arr1, step1, &loc2, offset_by_one, len_last)
- if comparison == -1:
- search_high = med2
- elif comparison == 1:
- search_low = med2 + step2
- else:
- break
-
- med_result_len = 0
- med_result = <int*> malloc(0*sizeof(int*))
- if search_high > search_low:
-# '''Then there is a match for the median element of Q'''
-#
-# '''What we want to find is the group of all bindings in the first set
-# s.t. their first element == the first element of med1. Then we
-# want to store the bindings for all of those elements. We can
-# subsequently throw all of them away.'''
- med2_minus = med2
- med2_plus = med2 + step2
- i1 = med1_minus
- while i1 < med1_plus:
- assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr)
- while med2_minus-step2 >= low2:
- assign_matching(&loc2, arr2, med2_minus-step2, step2, self.fda.sent_id.arr)
- if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) < 1:
- med2_minus = med2_minus - step2
- else:
- break
- i2 = med2_minus
- while i2 < high2:
- assign_matching(&loc2, arr2, i2, step2, self.fda.sent_id.arr)
- comparison = self.compare_matchings(&loc1, &loc2, offset_by_one, len_last)
- if comparison == 0:
- pass
- med_result = append_combined_matching(med_result, &loc1, &loc2, offset_by_one, num_subpatterns, &med_result_len)
- if comparison == -1:
- break
- i2 = i2 + step2
- if i2 > med2_plus:
- med2_plus = i2
- i1 = i1 + step1
-
- tmp = med1_minus
- med1_minus = med1_plus
- med1_plus = tmp
- else:
- # No match; need to figure out the point of division in D and Q
- med2_minus = med2
- med2_plus = med2
- if d_first:
- med2_minus = med2_minus + step2
- if comparison == -1:
- med1_minus = med1_plus
- if comparison == 1:
- med1_plus = med1_minus
- else:
- tmp = med1_minus
- med1_minus = med1_plus
- med1_plus = tmp
- if comparison == 1:
- med2_minus = med2_minus + step2
- med2_plus = med2_plus + step2
-
- low_result_len = 0
- low_result = self.baezaYatesHelper(low1, med1_plus, arr1, step1, low2, med2_plus, arr2, step2, offset_by_one, len_last, num_subpatterns, &low_result_len)
- high_result_len = 0
- high_result = self.baezaYatesHelper(med1_minus, high1, arr1, step1, med2_minus, high2, arr2, step2, offset_by_one, len_last, num_subpatterns, &high_result_len)
-
- result = extend_arr(result, result_len, low_result, low_result_len)
- result = extend_arr(result, result_len, med_result, med_result_len)
- result = extend_arr(result, result_len, high_result, high_result_len)
- free(low_result)
- free(med_result)
- free(high_result)
-
- return result
-
-
-
- cdef long compareMatchingsSet(self, int i1_minus, int i1_plus, int* arr1, int step1,
- Matching* loc2, int offset_by_one, int len_last):
-# '''Compares a *set* of bindings, all with the same first element,
-# to a single binding. Returns -1 if all comparisons == -1, 1 if all
-# comparisons == 1, and 0 otherwise.'''
- cdef int i1, comparison, prev_comparison
- cdef Matching l1_stack
- cdef Matching* loc1
-
- loc1 = &l1_stack
-
- i1 = i1_minus
- while i1 < i1_plus:
- assign_matching(loc1, arr1, i1, step1, self.fda.sent_id.arr)
- comparison = self.compare_matchings(loc1, loc2, offset_by_one, len_last)
- if comparison == 0:
- prev_comparison = 0
- break
- elif i1 == i1_minus:
- prev_comparison = comparison
- else:
- if comparison != prev_comparison:
- prev_comparison = 0
- break
- i1 = i1 + step1
- return prev_comparison
-
-
- cdef long compare_matchings(self, Matching* loc1, Matching* loc2, int offset_by_one, int len_last):
- cdef int i
-
- if loc1.sent_id > loc2.sent_id:
- return 1
- if loc2.sent_id > loc1.sent_id:
- return -1
-
- if loc1.size == 1 and loc2.size == 1:
- if loc2.arr[loc2.start] - loc1.arr[loc1.start] <= self.train_min_gap_size:
- return 1
-
- elif offset_by_one:
- for i from 1 <= i < loc1.size:
- if loc1.arr[loc1.start+i] > loc2.arr[loc2.start+i-1]:
- return 1
- if loc1.arr[loc1.start+i] < loc2.arr[loc2.start+i-1]:
- return -1
-
- else:
- if loc1.arr[loc1.start]+1 > loc2.arr[loc2.start]:
- return 1
- if loc1.arr[loc1.start]+1 < loc2.arr[loc2.start]:
- return -1
-
- for i from 1 <= i < loc1.size:
- if loc1.arr[loc1.start+i] > loc2.arr[loc2.start+i]:
- return 1
- if loc1.arr[loc1.start+i] < loc2.arr[loc2.start+i]:
- return -1
-
- if loc2.arr[loc2.end-1] + len_last - loc1.arr[loc1.start] > self.train_max_initial_size:
- return -1
- return 0
-
-
- cdef int* mergeHelper(self, int low1, int high1, int* arr1, int step1,
- int low2, int high2, int* arr2, int step2,
- int offset_by_one, int len_last, int num_subpatterns, int* result_len):
- cdef int i1, i2, j1, j2
- cdef long comparison
- cdef int* result
- cdef Matching loc1, loc2
-# cdef int i
-
-# pad = " "
-# log.writeln("->mergeHelper", 5)
-
- result_len[0] = 0
- result = <int*> malloc(0*sizeof(int))
-
- i1 = low1
- i2 = low2
-# if log.level==5:
-# log.writeln("%sMERGE lists [%d,%d,%d] and [%d,%d,%d]" % (pad,low1,high1,step1,low2,high2,step2), 5)
-# log.writeln("%soffset_by_one: %d, len_last: %d" % (pad, offset_by_one, len_last), 5)
-# log.write("[")
-# for i from low1 <= i < high1:
-# log.write("%d, " % arr1.arr[i],5)
-# log.writeln("]")
-# log.write("[")
-# for i from low2 <= i < high2:
-# log.write("%d, " % arr2.arr[i],5)
-# log.writeln("]")
- while i1 < high1 and i2 < high2:
-
-# '''First, pop all unneeded loc2's off the stack'''
- assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr)
-# if log.level==5:
-# log.writeln("%s TOP1 %s" % (pad,matching2str(loc1)),5)
- while i2 < high2:
- assign_matching(&loc2, arr2, i2, step2, self.fda.sent_id.arr)
- if self.compare_matchings(&loc1, &loc2, offset_by_one, len_last) == 1:
-# if log.level==5:
-# log.writeln("%s %s > %s" % (pad,matching2str(loc1),matching2str(loc2)),5)
-# log.writeln("%s POP2 %s" % (pad,matching2str(loc2)),5)
- i2 = i2 + step2
- else:
- break
-
-# '''Next: process all loc1's with the same starting val'''
- j1 = i1
- while i1 < high1 and arr1[j1] == arr1[i1]:
- assign_matching(&loc1, arr1, i1, step1, self.fda.sent_id.arr)
- j2 = i2
- while j2 < high2:
- assign_matching(&loc2, arr2, j2, step2, self.fda.sent_id.arr)
- comparison = self.compare_matchings(&loc1, &loc2, offset_by_one, len_last)
- if comparison == 0:
-# if log.level==5:
-# log.writeln("%s %s == %s" % (pad,matching2str(loc1),matching2str(loc2)),5)
- result = append_combined_matching(result, &loc1, &loc2, offset_by_one, num_subpatterns, result_len)
- if comparison == 1:
-# if log.level==5:
-# log.writeln("%s %s > %s" % (pad,matching2str(loc1),matching2str(loc2)),5)
- pass
- if comparison == -1:
-# if log.level==5:
-# log.writeln("%s %s < %s" % (pad,matching2str(loc1),matching2str(loc2)),5)
- break
- else:
- j2 = j2 + step2
-# if log.level==5:
-# log.writeln("%s POP1 %s" % (pad,matching2str(loc1)),5)
- i1 = i1 + step1
-
-# log.writeln("<-mergeHelper", 5)
- return result
-
-
- cdef void sortPhraseLoc(self, cintlist.CIntList arr, PhraseLocation loc, rule.Phrase phrase):
- cdef int i, j
- cdef cveb.VEB veb
- cdef cintlist.CIntList result
-
- if phrase in self.precomputed_index:
- loc.arr = self.precomputed_index[phrase]
- else:
- loc.arr = cintlist.CIntList(initial_len=loc.sa_high-loc.sa_low)
- veb = cveb.VEB(arr.len)
- for i from loc.sa_low <= i < loc.sa_high:
- veb._insert(arr.arr[i])
- i = veb.veb.min_val
- for j from 0 <= j < loc.sa_high-loc.sa_low:
- loc.arr.arr[j] = i
- i = veb._findsucc(i)
- loc.arr_low = 0
- loc.arr_high = loc.arr.len
-
-
- cdef intersectHelper(self, rule.Phrase prefix, rule.Phrase suffix,
- PhraseLocation prefix_loc, PhraseLocation suffix_loc, int algorithm):
-
- cdef cintlist.CIntList arr1, arr2, result
- cdef int low1, high1, step1, low2, high2, step2, offset_by_one, len_last, num_subpatterns, result_len
- cdef int* result_ptr
- cdef csuf.SuffixArray suf
-
- result_len = 0
-
- if sym.isvar(suffix[0]):
- offset_by_one = 1
- else:
- offset_by_one = 0
-
- len_last = len(suffix.getchunk(suffix.arity()))
-
- if prefix_loc.arr is None:
- suf = self.context_manager.fsarray
- self.sortPhraseLoc(suf.sa, prefix_loc, prefix)
- arr1 = prefix_loc.arr
- low1 = prefix_loc.arr_low
- high1 = prefix_loc.arr_high
- step1 = prefix_loc.num_subpatterns
-
- if suffix_loc.arr is None:
- suf = self.context_manager.fsarray
- self.sortPhraseLoc(suf.sa, suffix_loc, suffix)
- arr2 = suffix_loc.arr
- low2 = suffix_loc.arr_low
- high2 = suffix_loc.arr_high
- step2 = suffix_loc.num_subpatterns
-
- num_subpatterns = prefix.arity()+1
-
- if algorithm == MERGE:
- result_ptr = self.mergeHelper(low1, high1, arr1.arr, step1,
- low2, high2, arr2.arr, step2,
- offset_by_one, len_last, num_subpatterns, &result_len)
- else:
- result_ptr = self.baezaYatesHelper(low1, high1, arr1.arr, step1,
- low2, high2, arr2.arr, step2,
- offset_by_one, len_last, num_subpatterns, &result_len)
-
- if result_len == 0:
- free(result_ptr)
- return None
- else:
- result = cintlist.CIntList()
- free(result.arr)
- result.arr = result_ptr
- result.len = result_len
- result.size = result_len
- return PhraseLocation(arr_low=0, arr_high=result_len, arr=result, num_subpatterns=num_subpatterns)
-
- cdef loc2str(self, PhraseLocation loc):
- cdef int i, j
- result = "{"
- i = 0
- while i < loc.arr_high:
- result = result + "("
- for j from i <= j < i + loc.num_subpatterns:
- result = result + ("%d " %loc.arr[j])
- result = result + ")"
- i = i + loc.num_subpatterns
- result = result + "}"
- return result
-
-# cdef compareResults(self, PhraseLocation loc1, PhraseLocation loc2, phrase, type1, type2):
-# cdef i
-# if loc1 is None and type1=="pre":
-# return
-# if loc1 is None:
-# if loc2 is None or loc2.arr_high == 0:
-# return
-# if loc2 is None:
-# if loc1.arr_high == 0:
-# return
-# if loc1.arr_high != loc2.arr_high:
-# log.writeln("ERROR: %d vs %d (%s vs %s)" % (loc1.arr_high, loc2.arr_high, type1, type2))
-# #log.writeln(" %s" % self.loc2str(loc2))
-# if loc1.arr_high == 0:
-# return
-# elif loc1.num_subpatterns != loc2.num_subpatterns:
-# log.writeln("ERROR 2: %d vs %d (%d v %d) %s" % (loc1.num_subpatterns, loc2.num_subpatterns, loc1.arr_high, loc2.arr_high, phrase))
-# for i from 0 <= i < loc1.arr_high:
-# if loc1.arr[i] != loc2.arr[i]:
-# log.writeln("ERROR 3")
-#
- cdef PhraseLocation intersect(self, prefix_node, suffix_node, rule.Phrase phrase):
- cdef rule.Phrase prefix, suffix
- cdef PhraseLocation prefix_loc, suffix_loc, result
-
- start_time = monitor.cpu()
- prefix = prefix_node.phrase
- suffix = suffix_node.phrase
- prefix_loc = prefix_node.phrase_location
- suffix_loc = suffix_node.phrase_location
-
- result = self.getPrecomputedCollocation(phrase)
- if result is not None:
- intersect_method = "precomputed"
-
- if result is None:
- if self.useBaezaYates:
- result = self.intersectHelper(prefix, suffix, prefix_loc, suffix_loc, BAEZA_YATES)
- intersect_method="double binary"
- else:
- result = self.intersectHelper(prefix, suffix, prefix_loc, suffix_loc, MERGE)
- intersect_method="merge"
- stop_time = monitor.cpu()
- intersect_time = stop_time - start_time
- if self.log_int_stats:
- if intersect_method == "precomputed":
- sort1 = "none"
- sort2 = "none"
- else:
- if prefix in self.precomputed_index:
- sort1 = "index"
- else:
- sort1 = "veb"
- if suffix in self.precomputed_index:
- sort2 = "index"
- else:
- sort2 = "veb"
- result_len=0
- if result is not None:
- result_len = len(result.arr)/result.num_subpatterns
- rank = 0
-# if phrase in self.max_rank:
-# rank = self.max_rank[phrase]
-# else:
-# rank = self.precompute_rank + 10
- log.writeln("INT %d %d %d %d %d %f %d %s %s %s" %
- (len(prefix)+1 - prefix.arity(), prefix.arity(),
- nGramCount(prefix_node.phrase_location),
- nGramCount(suffix_node.phrase_location),
- result_len, intersect_time, rank, intersect_method, sort1, sort2))
- return result
-
- def advance(self, frontier, res, fwords):
- nf = []
- for (toskip, (i, alt, pathlen)) in frontier:
- spanlen = fwords[i][alt][2]
- if (toskip == 0):
- #log.writeln("RES: (%d %d %d)" % (i, alt, pathlen), 3)
- res.append((i, alt, pathlen))
- ni = i + spanlen
- #log.writeln("proc: %d (%d %d %d) sl=%d ni=%d len(fwords)=%d" % (toskip, i, alt, pathlen, spanlen, ni, len(fwords)), 3)
- if (ni < len(fwords) and (pathlen + 1) < self.max_initial_size):
- for na in xrange(len(fwords[ni])):
- nf.append((toskip - 1, (ni, na, pathlen + 1)))
- if (len(nf) > 0):
- return self.advance(nf, res, fwords)
- else:
- return res
-
- def get_all_nodes_isteps_away(self, skip, i, spanlen, pathlen, fwords, next_states, reachable_buffer):
- frontier = []
- if (i+spanlen+skip >= len(next_states)):
- return frontier
- #print "get_all_nodes_isteps_away from %i" % (i)
- key = tuple([i,spanlen])
- reachable = []
- if (key in reachable_buffer):
- reachable = reachable_buffer[key]
- else:
- reachable = self.reachable(fwords, i, spanlen)
- reachable_buffer[key] = reachable
- #print "reachable(from=%i,dist=%i) = " % (i,spanlen)
- #print reachable
- for nextreachable in reachable:
- for next_id in next_states[nextreachable]:
- jump = self.shortest(fwords,i,next_id)
- #print "checking next_id = %i, pathlen[sofar] = %i, jump = %i" % (next_id,pathlen,jump)
- #if (next_id - (i+spanlen)) < skip:
- if jump < skip:
- continue
- #if next_id-(i-pathlen) < self.max_initial_size:
- if pathlen+jump <= self.max_initial_size:
- for alt_id in xrange(len(fwords[next_id])):
- if (fwords[next_id][alt_id][0] != cn.epsilon):
- #frontier.append((next_id,alt_id,next_id-(i-pathlen)));
- #print "finding the shortest from %i to %i" % (i, next_id)
- newel = (next_id,alt_id,pathlen+jump)
- if newel not in frontier:
- frontier.append((next_id,alt_id,pathlen+jump))
- #print "appending to frontier = next_id=%i, alt_id=%i, pathlen=%i" % (next_id,alt_id,pathlen+jump)
- #else:
- #print "NOT appending to frontier = next_id=%i, alt_id=%i, pathlen=%i" % (next_id,alt_id,pathlen+jump)
- #else:
- #print "next_id = %s is aborted\n" % next_id
- #print "returning frontier"
- #print frontier
- return frontier
-
- def reachable(self, fwords, ifrom, dist):
- #print "inside reachable(%i,%i)" % (ifrom,dist)
- ret = []
- if (ifrom >= len(fwords)):
- return ret
- for alt_id in xrange(len(fwords[ifrom])):
- if (fwords[ifrom][alt_id][0] == cn.epsilon):
- ret.extend(self.reachable(fwords,ifrom+fwords[ifrom][alt_id][2],dist))
- else:
- if (dist==0):
- if (ifrom not in ret):
- ret.append(ifrom)
- else:
- for ifromchild in self.reachable(fwords,ifrom+fwords[ifrom][alt_id][2],dist-1):
- if (ifromchild not in ret):
- ret.append(ifromchild)
-
- return ret
-
- def shortest(self, fwords, ifrom, ito):
- min = 1000
- #print "shortest ifrom=%i, ito=%i" % (ifrom,ito)
- if (ifrom > ito):
- return min
- if (ifrom == ito):
- return 0
- for alt_id in xrange(len(fwords[ifrom])):
- currmin = self.shortest(fwords,ifrom+fwords[ifrom][alt_id][2],ito)
- if (fwords[ifrom][alt_id][0] != cn.epsilon):
- currmin += 1
- if (currmin<min):
- min = currmin
- return min
-
- def get_next_states(self, _columns, curr_idx, min_dist=2):
- result = []
- candidate = [[curr_idx,0]]
-
- while len(candidate) > 0:
- curr = candidate.pop()
- if curr[0] >= len(_columns):
- continue
- if curr[0] not in result and min_dist <= curr[1] <= self.max_initial_size:
- result.append(curr[0]);
- curr_col = _columns[curr[0]]
- for alt in curr_col:
- next_id = curr[0]+alt[2]
- jump = 1
- if (alt[0] == cn.epsilon):
- jump = 0
- if next_id not in result and min_dist <= curr[1]+jump <= self.max_initial_size+1:
- candidate.append([next_id,curr[1]+jump])
- return sorted(result);
-
- def input(self, fwords, meta):
- '''When this function is called on the RuleFactory,
- it looks up all of the rules that can be used to translate
- the input sentence'''
- cdef int i, j, k, flen, arity, num_subpatterns, num_samples
- cdef float start_time
- cdef PhraseLocation phrase_location
- cdef cintlist.CIntList sample, chunklen
- cdef Matching matching
- cdef rule.Phrase hiero_phrase
-
- #fwords = [ ((1,0.0,1),), fwords1 ] #word id for <s> = 1, cost = 0.0, next = 1
- #print fwords
- flen = len(fwords)
- #print "length = %i" % flen
- start_time = monitor.cpu()
- self.intersect_time = 0.0
- self.extract_time = 0.0
- nodes_isteps_away_buffer = {}
- hit = 0
- reachable_buffer = {}
- #print "id = ",meta
- #print "rule_file = ",self.rule_file
- dattrs = sgml.attrs_to_dict(meta)
- id = dattrs.get('id', 'NOID')
- if self.per_sentence_grammar:
- self.rule_filehandler = open(self.rule_file+'.'+id, 'w')
- self.excluded_sent_id = int(dattrs.get('exclude', '-1'))
-
- #print "max_initial_size = %i" % self.max_initial_size
-
- if not self.cacheBetweenSents:
- self.rules.root = ExtendedTrieNode(phrase_location=PhraseLocation())
- self.grammar.root = [None, {}]
-
- frontier = []
- for i in xrange(len(fwords)):
- for alt in xrange(0, len(fwords[i])):
- if fwords[i][alt][0] != cn.epsilon:
- frontier.append((i, i, alt, 0, self.rules.root, (), False))
-
- xroot = None
- x1 = sym.setindex(self.category, 1)
- if x1 in self.rules.root.children:
- xroot = self.rules.root.children[x1]
- else:
- xroot = ExtendedTrieNode(suffix_link=self.rules.root, phrase_location=PhraseLocation())
- self.rules.root.children[x1] = xroot
-
- for i in xrange(self.min_gap_size, len(fwords)):
- for alt in xrange(0, len(fwords[i])):
- if fwords[i][alt][0] != cn.epsilon:
- frontier.append((i-self.min_gap_size, i, alt, self.min_gap_size, xroot, (x1,), True))
- '''for k, i, alt, pathlen, node, prefix, is_shadow_path in frontier:
- if len(prefix)>0:
- print k, i, alt, pathlen, node, map(sym.tostring,prefix), is_shadow_path
- else:
- print k, i, alt, pathlen, node, prefix, is_shadow_path'''
-
- #for wid in xrange(1000):
- # print "%i = %s" % (wid, sym.tostring(wid))
- next_states = []
- for i in xrange(len(fwords)):
- next_states.append(self.get_next_states(fwords,i,self.min_gap_size))
- #print "next state of %i" % i
- #print next_states[i]
-
- while len(frontier) > 0:
- #print "frontier = %i" % len(frontier)
- this_iter_intersect_time = self.intersect_time
- new_frontier = []
- for k, i, alt, pathlen, node, prefix, is_shadow_path in frontier:
- #print "looking at: "
- #if len(prefix)>0:
- # print k, i, alt, pathlen, node, map(sym.tostring,prefix), is_shadow_path
- #else:
- # print k, i, alt, pathlen, node, prefix, is_shadow_path
- word_id = fwords[i][alt][0]
- spanlen = fwords[i][alt][2]
- #print "word_id = %i, %s" % (word_id, sym.tostring(word_id))
- # to prevent .. [X] </S>
- #print "prefix = ",prefix
- #if word_id == 2 and len(prefix)>=2:
- #print "at the end: %s" % (prefix[len(prefix)-1])
- #if prefix[len(prefix)-1]<0:
- #print "break"
- #continue
- #print "continuing"
- #if pathlen + spanlen > self.max_initial_size:
- #continue
- # TODO get rid of k -- pathlen is replacing it
- if word_id == cn.epsilon:
- #print "skipping because word_id is epsilon"
- if i+spanlen >= len(fwords):
- continue
- for nualt in xrange(0,len(fwords[i+spanlen])):
- frontier.append((k, i+spanlen, nualt, pathlen, node, prefix, is_shadow_path))
- continue
-
- phrase = prefix + (word_id,)
- str_phrase = map(sym.tostring, phrase)
- hiero_phrase = rule.Phrase(phrase)
- arity = hiero_phrase.arity()
-
- #print "pos %2d, node %5d, '%s'" % (i, node.id, hiero_phrase)
- if self.search_file is not None:
- self.search_file.write("%s\n" % hiero_phrase)
-
- lookup_required = False
- if word_id in node.children:
- if node.children[word_id] is None:
- #print "Path dead-ends at this node\n"
- continue
- else:
- #print "Path continues at this node\n"
- node = node.children[word_id]
- else:
- if node.suffix_link is None:
- #print "Current node is root; lookup required\n"
- lookup_required = True
- else:
- if word_id in node.suffix_link.children:
- if node.suffix_link.children[word_id] is None:
- #print "Suffix link reports path is dead end\n"
- node.children[word_id] = None
- continue
- else:
- #print "Suffix link indicates lookup is reqired\n"
- lookup_required = True
- else:
- #print "ERROR: We never get here\n"
- raise Exception("Keyword trie error")
- #new_frontier.append((k, i, alt, pathlen, node, prefix, is_shadow_path))
- #print "checking whether lookup_required\n"
- if lookup_required:
- new_node = None
- if is_shadow_path:
- #print "Extending shadow path for %s \n"
- # on the shadow path we don't do any search, we just use info from suffix link
- new_node = ExtendedTrieNode(phrase_location=node.suffix_link.children[word_id].phrase_location,
- suffix_link=node.suffix_link.children[word_id],
- phrase=hiero_phrase)
- else:
- if arity > 0:
- #print "Intersecting for %s because of arity > 0\n" % hiero_phrase
- phrase_location = self.intersect(node, node.suffix_link.children[word_id], hiero_phrase)
- else:
- #print "Suffix array search for %s" % hiero_phrase
- phrase_location = node.phrase_location
- sa_range = self.context_manager.fsarray.lookup(str_phrase[-1], len(str_phrase)-1, phrase_location.sa_low, phrase_location.sa_high)
- if sa_range is not None:
- phrase_location = PhraseLocation(sa_low=sa_range[0], sa_high=sa_range[1])
- else:
- phrase_location = None
-
- if phrase_location is None:
- node.children[word_id] = None
- #print "Search failed\n"
- continue
- #print "Search succeeded\n"
- suffix_link = self.rules.root
- if node.suffix_link is not None:
- suffix_link = node.suffix_link.children[word_id]
- new_node = ExtendedTrieNode(phrase_location=phrase_location,
- suffix_link=suffix_link,
- phrase=hiero_phrase)
- node.children[word_id] = new_node
- node = new_node
- #print "Added node %d with suffix link %d\n" % (node.id, node.suffix_link.id)
-
- '''Automatically add a trailing X node, if allowed --
- This should happen before we get to extraction (so that
- the node will exist if needed)'''
- if arity < self.max_nonterminals:
- xcat_index = arity+1
- xcat = sym.setindex(self.category, xcat_index)
- suffix_link_xcat_index = xcat_index
- if is_shadow_path:
- suffix_link_xcat_index = xcat_index-1
- suffix_link_xcat = sym.setindex(self.category, suffix_link_xcat_index)
- node.children[xcat] = ExtendedTrieNode(phrase_location=node.phrase_location,
- suffix_link=node.suffix_link.children[suffix_link_xcat],
- phrase= rule.Phrase(phrase + (xcat,)))
- #log.writeln("Added node %d with suffix link %d (for X)" % (node.children[xcat].id, node.children[xcat].suffix_link.id), 4)
-
- # sample from range
- if not is_shadow_path:
- #print "is_not_shadow_path"
- sample = self.context_manager.sampler.sample(node.phrase_location)
- #print "node.phrase_location %s" % str(node.phrase_location)
- #print "sample.len = %i" % len(sample)
- num_subpatterns = (<PhraseLocation> node.phrase_location).num_subpatterns
- chunklen = cintlist.CIntList(initial_len=num_subpatterns)
- for j from 0 <= j < num_subpatterns:
- chunklen.arr[j] = hiero_phrase.chunklen(j)
- extracts = []
- j = 0
- extract_start = monitor.cpu()
- '''orig_tight_phrases = self.tight_phrases
- orig_require_aligned_terminal = self.require_aligned_terminal
- orig_require_aligned_chunks = self.require_aligned_chunks
- if k==0 or i==len(fwords)-1:
- self.tight_phrases = 0
- self.require_aligned_terminal = 0
- self.require_aligned_chunks = 0'''
- while j < sample.len:
- extract = []
-
- assign_matching(&matching, sample.arr, j, num_subpatterns, self.fda.sent_id.arr)
- '''print "tight_phrase = "
- print self.tight_phrases
- print "require_aligned_terminal = "
- print self.require_aligned_terminal
- print "require_aligned_chunks = "
- print self.require_aligned_chunks'''
-
- extract = self.extract(hiero_phrase, &matching, chunklen.arr, num_subpatterns)
- extracts.extend(extract)
- j = j + num_subpatterns
- '''self.tight_phrases = orig_tight_phrases
- sttice+sa.nw.normelf.require_aligned_terminal = orig_require_aligned_terminal
- self.require_aligned_chunks = orig_require_aligned_chunks'''
- num_samples = sample.len/num_subpatterns
- extract_stop = monitor.cpu()
- self.extract_time = self.extract_time + extract_stop - extract_start
- #print "extract.size = %i" % len(extracts)
- if len(extracts) > 0:
- fphrases = {}
- fals = {}
- fcount = {}
- for f, e, count, als in extracts:
- fcount.setdefault(f, 0.0)
- fcount[f] = fcount[f] + count
- fphrases.setdefault(f, {})
- fphrases[f].setdefault(e, {})
- #fphrases[f][e] = fphrases[f][e] + count
- fphrases[f][e].setdefault(als,0.0)
- fphrases[f][e][als] = fphrases[f][e][als] + count
- #print "f,e,als ",f," : ",e," : ",als," count = ",fphrases[f][e][als]
- #fals[str(f)+" ||| "+str(e)] = als
- for f, elist in fphrases.iteritems():
- #print "f = '%s'" % f
- #if (str(f) in ['<s>','</s>','<s> [X,1]','[X,1] </s>']):
- # print "rejected"
- # continue
- f_margin = fcount[f]
- for e, alslist in elist.iteritems():
- alignment = None
- count = 0
- for als, currcount in alslist.iteritems():
- #print "als = ",als,", count = ",currcount
- if currcount > count:
- alignment = als
- count = currcount
- #alignment = fals[str(f)+" ||| "+str(e)]
- #print "selected = ",alignment," with count = ",count
- scores = []
- for m in self.context_manager.models:
- scores.append(m.compute_contextless_score(f, e, count, fcount[f], num_samples))
- r = rule.Rule(self.category, f, e, scores=scores, owner="context", word_alignments = alignment)
- self.grammar.add(r)
- if self.rule_filehandler is not None:
- self.rule_filehandler.write("%s\n" % r.to_line())
- #print "adding a rule = %s" % r
-
- #if len(phrase) < self.max_length and i+spanlen < len(fwords) and pathlen+spanlen < self.max_initial_size:
- if len(phrase) < self.max_length and i+spanlen < len(fwords) and pathlen+1 <= self.max_initial_size:
- #to prevent [X] </s>
- #print "lexicalized"
- for alt_id in xrange(len(fwords[i+spanlen])):
- #if (fwords[i+spanlen][alt_id][2]+pathlen+spanlen <= self.max_initial_size):
- #new_frontier.append((k, i+spanlen, alt_id, pathlen + spanlen, node, phrase, is_shadow_path))
- #print "alt_id = %d\n" % alt_id
- new_frontier.append((k, i+spanlen, alt_id, pathlen + 1, node, phrase, is_shadow_path))
- #print (k, i+spanlen, alt_id, pathlen + spanlen, node, map(sym.tostring,phrase), is_shadow_path)
- #print "end lexicalized"
- num_subpatterns = arity
- if not is_shadow_path:
- num_subpatterns = num_subpatterns + 1
- #to avoid <s> X ... we want <s> next to a lexicalized item
- #if k>0 and i<len(fwords)-1 and len(phrase)+1 < self.max_length and arity < self.max_nonterminals and num_subpatterns < self.max_chunks:
- if len(phrase)+1 < self.max_length and arity < self.max_nonterminals and num_subpatterns < self.max_chunks:
- #print "masuk kondisi"
- xcat = sym.setindex(self.category, arity+1)
- xnode = node.children[xcat]
- #frontier_nodes = self.get_all_nodes_isteps_away(self.min_gap_size, i, spanlen, pathlen, fwords, next_states)
- # I put spanlen=1 below
- key = tuple([self.min_gap_size, i, 1, pathlen])
- frontier_nodes = []
- if (key in nodes_isteps_away_buffer):
- frontier_nodes = nodes_isteps_away_buffer[key]
- else:
- frontier_nodes = self.get_all_nodes_isteps_away(self.min_gap_size, i, 1, pathlen, fwords, next_states, reachable_buffer)
- nodes_isteps_away_buffer[key] = frontier_nodes
-
- #print "new frontier:\n"
- for (i, alt, pathlen) in frontier_nodes:
- #if (pathlen+fwords[i][alt][2] <= self.max_initial_size):
- new_frontier.append((k, i, alt, pathlen, xnode, phrase +(xcat,), is_shadow_path))
- #print k, i, alt, pathlen, node, map(sym.tostring,phrase +(xcat,)), is_shadow_path
- #print "all end\n";
- #else:
- #print "no new frontier1\n";
- #else :
- #print "no new frontier2\n"
- if self.log_int_stats:
- log.writeln("This iteration intersect time = %f" % (self.intersect_time - this_iter_intersect_time))
- frontier = new_frontier
-
- stop_time = monitor.cpu()
- log.writeln("Total time for rule lookup, extraction, and scoring = %f seconds" % (stop_time - start_time))
- #log.writeln(" Intersect time = %f seconds" % self.intersect_time)
- gc.collect()
- log.writeln(" Extract time = %f seconds" % self.extract_time)
- if self.pruned_rule_file:
- self.grammar.dump(self.pruned_rule_file)
- if self.per_sentence_grammar:
- self.rule_filehandler.close()
-
-# else:
-# self.rule_filehandler.write("###EOS_"+ id +"\n")
-
-
- cdef int find_fixpoint(self,
- int f_low, f_high,
- int* f_links_low, int* f_links_high,
- int* e_links_low, int* e_links_high,
- int e_in_low, int e_in_high,
- int* e_low, int* e_high,
- int* f_back_low, int* f_back_high,
- int f_sent_len, int e_sent_len,
- int max_f_len, int max_e_len,
- int min_fx_size, int min_ex_size,
- int max_new_x,
- int allow_low_x, int allow_high_x,
- int allow_arbitrary_x, int write_log):
- cdef int e_low_prev, e_high_prev, f_low_prev, f_high_prev, new_x, new_low_x, new_high_x
-
- e_low[0] = e_in_low
- e_high[0] = e_in_high
- self.find_projection(f_low, f_high, f_links_low, f_links_high, e_low, e_high)
- if e_low[0] == -1:
- # low-priority corner case: if phrase w is unaligned,
- # but we don't require aligned terminals, then returning
- # an error here might prevent extraction of allowed
- # rule X -> X_1 w X_2 / X_1 X_2. This is probably
- # not worth the bother, though.
- #print "find_fixpoint0"
- return 0
- elif e_in_low != -1 and e_low[0] != e_in_low:
- if e_in_low - e_low[0] < min_ex_size:
- e_low[0] = e_in_low - min_ex_size
- if e_low[0] < 0:
- #print "find_fixpoint1"
- return 0
-
- if e_high[0] - e_low[0] > max_e_len:
- #print "find_fixpoint2"
- return 0
- elif e_in_high != -1 and e_high[0] != e_in_high:
- if e_high[0] - e_in_high < min_ex_size:
- e_high[0] = e_in_high + min_ex_size
- if e_high[0] > e_sent_len:
- #print "find_fixpoint3"
- return 0
-
- f_back_low[0] = -1
- f_back_high[0] = -1
- f_low_prev = f_low
- f_high_prev = f_high
- new_x = 0
- new_low_x = 0
- new_high_x = 0
-
- while True:
-
- if f_back_low[0] == -1:
- self.find_projection(e_low[0], e_high[0], e_links_low, e_links_high, f_back_low, f_back_high)
- else:
- self.find_projection(e_low[0], e_low_prev, e_links_low, e_links_high, f_back_low, f_back_high)
- self.find_projection(e_high_prev, e_high[0], e_links_low, e_links_high, f_back_low, f_back_high)
-
- if f_back_low[0] > f_low:
- f_back_low[0] = f_low
-
- if f_back_high[0] < f_high:
- f_back_high[0] = f_high
-
- if f_back_low[0] == f_low_prev and f_back_high[0] == f_high_prev:
- return 1
-
- if allow_low_x == 0 and f_back_low[0] < f_low:
-# log.writeln(" FAIL: f phrase is not tight")
- #print " FAIL: f phrase is not tight"
- return 0
-
- if f_back_high[0] - f_back_low[0] > max_f_len:
-# log.writeln(" FAIL: f back projection is too wide")
- #print " FAIL: f back projection is too wide"
- return 0
-
- if allow_high_x == 0 and f_back_high[0] > f_high:
-# log.writeln(" FAIL: extension on high side not allowed")
- #print " FAIL: extension on high side not allowed"
- return 0
-
- if f_low != f_back_low[0]:
- if new_low_x == 0:
- if new_x >= max_new_x:
-# log.writeln(" FAIL: extension required on low side violates max # of gaps")
- #print " FAIL: extension required on low side violates max # of gaps"
- return 0
- else:
- new_x = new_x + 1
- new_low_x = 1
- if f_low - f_back_low[0] < min_fx_size:
- f_back_low[0] = f_low - min_fx_size
- if f_back_high[0] - f_back_low[0] > max_f_len:
-# log.writeln(" FAIL: extension required on low side violates max initial length")
- #print " FAIL: extension required on low side violates max initial length"
- return 0
- if f_back_low[0] < 0:
-# log.writeln(" FAIL: extension required on low side violates sentence boundary")
- #print " FAIL: extension required on low side violates sentence boundary"
- return 0
-
- if f_high != f_back_high[0]:
- if new_high_x == 0:
- if new_x >= max_new_x:
-# log.writeln(" FAIL: extension required on high side violates max # of gaps")
- #print " FAIL: extension required on high side violates max # of gaps"
- return 0
- else:
- new_x = new_x + 1
- new_high_x = 1
- if f_back_high[0] - f_high < min_fx_size:
- f_back_high[0] = f_high + min_fx_size
- if f_back_high[0] - f_back_low[0] > max_f_len:
-# log.writeln(" FAIL: extension required on high side violates max initial length")
- #print " FAIL: extension required on high side violates max initial length"
- return 0
- if f_back_high[0] > f_sent_len:
-# log.writeln(" FAIL: extension required on high side violates sentence boundary")
- #print " FAIL: extension required on high side violates sentence boundary"
- return 0
-
- e_low_prev = e_low[0]
- e_high_prev = e_high[0]
-
- self.find_projection(f_back_low[0], f_low_prev, f_links_low, f_links_high, e_low, e_high)
- self.find_projection(f_high_prev, f_back_high[0], f_links_low, f_links_high, e_low, e_high)
- if e_low[0] == e_low_prev and e_high[0] == e_high_prev:
- return 1
- if allow_arbitrary_x == 0:
-# log.writeln(" FAIL: arbitrary expansion not permitted")
- #print " FAIL: arbitrary expansion not permitted"
- return 0
- if e_high[0] - e_low[0] > max_e_len:
-# log.writeln(" FAIL: re-projection violates sentence max phrase length")
- #print " FAIL: re-projection violates sentence max phrase length"
- return 0
- f_low_prev = f_back_low[0]
- f_high_prev = f_back_high[0]
-
-
- cdef find_projection(self, int in_low, int in_high, int* in_links_low, int* in_links_high,
- int* out_low, int* out_high):
- cdef int i
- for i from in_low <= i < in_high:
- if in_links_low[i] != -1:
- if out_low[0] == -1 or in_links_low[i] < out_low[0]:
- out_low[0] = in_links_low[i]
- if out_high[0] == -1 or in_links_high[i] > out_high[0]:
- out_high[0] = in_links_high[i]
-
-
- cdef int* int_arr_extend(self, int* arr, int* arr_len, int* data, int data_len):
- cdef int new_len
- new_len = arr_len[0] + data_len
- arr = <int*> realloc(arr, new_len*sizeof(int))
- memcpy(arr+arr_len[0], data, data_len*sizeof(int))
- arr_len[0] = new_len
- return arr
-
-
- cdef extract_phrases(self, int e_low, int e_high, int* e_gap_low, int* e_gap_high, int* e_links_low, int num_gaps,
- int f_low, int f_high, int* f_gap_low, int* f_gap_high, int* f_links_low,
- int sent_id, int e_sent_len, int e_sent_start):
- cdef int i, j, k, m, n, *e_gap_order, e_x_low, e_x_high, e_x_gap_low, e_x_gap_high
- cdef int *e_gaps1, *e_gaps2, len1, len2, step, num_chunks
- cdef cintlist.CIntList ephr_arr
- cdef result
-
- #print "inside extract_phrases"
- #print "f_low=%d, f_high=%d" % (f_low,f_high)
- result = []
- len1 = 0
- e_gaps1 = <int*> malloc(0)
- ephr_arr = cintlist.CIntList()
-
- e_gap_order = <int*> malloc(num_gaps*sizeof(int))
- if num_gaps > 0:
- e_gap_order[0] = 0
- for i from 1 <= i < num_gaps:
- for j from 0 <= j < i:
- if e_gap_low[i] < e_gap_low[j]:
- for k from j <= k < i:
- e_gap_order[k+1] = e_gap_order[k]
- e_gap_order[j] = i
- break
- else:
- e_gap_order[i] = i
-
- e_x_low = e_low
- e_x_high = e_high
- if self.tight_phrases == 0:
- while e_x_low > 0 and e_high - e_x_low < self.train_max_initial_size and e_links_low[e_x_low-1] == -1:
- e_x_low = e_x_low - 1
- while e_x_high < e_sent_len and e_x_high - e_low < self.train_max_initial_size and e_links_low[e_x_high] == -1:
- e_x_high = e_x_high + 1
-
- for i from e_x_low <= i <= e_low:
- e_gaps1 = self.int_arr_extend(e_gaps1, &len1, &i, 1)
-
- for i from 0 <= i < num_gaps:
- e_gaps2 = <int*> malloc(0)
- len2 = 0
-
- j = e_gap_order[i]
- e_x_gap_low = e_gap_low[j]
- e_x_gap_high = e_gap_high[j]
- if self.tight_phrases == 0:
- while e_x_gap_low > e_x_low and e_links_low[e_x_gap_low-1] == -1:
- e_x_gap_low = e_x_gap_low - 1
- while e_x_gap_high < e_x_high and e_links_low[e_x_gap_high] == -1:
- e_x_gap_high = e_x_gap_high + 1
-
- k = 0
- step = 1+(i*2)
- while k < len1:
- for m from e_x_gap_low <= m <= e_gap_low[j]:
- if m >= e_gaps1[k+step-1]:
- for n from e_gap_high[j] <= n <= e_x_gap_high:
- if n-m >= 1: # extractor.py doesn't restrict target-side gap length
- e_gaps2 = self.int_arr_extend(e_gaps2, &len2, e_gaps1+k, step)
- e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &m, 1)
- e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &n, 1)
- k = k + step
- free(e_gaps1)
- e_gaps1 = e_gaps2
- len1 = len2
-
- step = 1+(num_gaps*2)
- e_gaps2 = <int*> malloc(0)
- len2 = 0
- for i from e_high <= i <= e_x_high:
- j = 0
- while j < len1:
- if i - e_gaps1[j] <= self.train_max_initial_size and i >= e_gaps1[j+step-1]:
- e_gaps2 = self.int_arr_extend(e_gaps2, &len2, e_gaps1+j, step)
- e_gaps2 = self.int_arr_extend(e_gaps2, &len2, &i, 1)
- j = j + step
- free(e_gaps1)
- e_gaps1 = e_gaps2
- len1 = len2
-
- step = (num_gaps+1)*2
- i = 0
-
- while i < len1:
- ephr_arr._clear()
- num_chunks = 0
- indexes = []
- for j from 0 <= j < num_gaps+1:
- if e_gaps1[i+2*j] < e_gaps1[i+(2*j)+1]:
- num_chunks = num_chunks + 1
- for k from e_gaps1[i+2*j] <= k < e_gaps1[i+(2*j)+1]:
- indexes.append(k)
- ephr_arr._append(self.eid2symid[self.eda.data.arr[e_sent_start+k]])
- if j < num_gaps:
- indexes.append(sym.setindex(self.category, e_gap_order[j]+1))
- ephr_arr._append(sym.setindex(self.category, e_gap_order[j]+1))
- i = i + step
- if ephr_arr.len <= self.max_target_length and num_chunks <= self.max_target_chunks:
- result.append((rule.Phrase(ephr_arr),indexes))
-
- free(e_gaps1)
- free(e_gap_order)
- return result
-
- cdef create_alignments(self, int* sent_links, int num_links, findexes, eindexes):
- #print "create_alignments"
- #s = "sent_links = "
- #i = 0
- #while (i < num_links*2):
- # s = s+"%d-%d " % (sent_links[i],sent_links[i+1])
- # i += 2
- #print s
- #print findexes
- #print eindexes
-
- ret = cintlist.CIntList()
- for i in xrange(len(findexes)):
- s = findexes[i]
- if (s<0):
- continue
- idx = 0
- while (idx < num_links*2):
- if (sent_links[idx] == s):
- j = eindexes.index(sent_links[idx+1])
- ret.append(i*65536+j)
- idx += 2
- return ret
-
- cdef extract(self, rule.Phrase phrase, Matching* matching, int* chunklen, int num_chunks):
- cdef int* sent_links, *e_links_low, *e_links_high, *f_links_low, *f_links_high
- cdef int *f_gap_low, *f_gap_high, *e_gap_low, *e_gap_high, num_gaps, gap_start
- cdef int i, j, k, e_i, f_i, num_links, num_aligned_chunks, met_constraints
- cdef int f_low, f_high, e_low, e_high, f_back_low, f_back_high
- cdef int e_sent_start, e_sent_end, f_sent_start, f_sent_end, e_sent_len, f_sent_len
- cdef int e_word_count, f_x_low, f_x_high, e_x_low, e_x_high, phrase_len
- cdef float pair_count
- cdef float available_mass
- cdef extracts, phrase_list
- cdef cintlist.CIntList fphr_arr
- cdef rule.Phrase fphr
- cdef reason_for_failure
-
- fphr_arr = cintlist.CIntList()
- phrase_len = phrase.n
- extracts = []
- sent_links = self.alignment._get_sent_links(matching.sent_id, &num_links)
-
- e_sent_start = self.eda.sent_index.arr[matching.sent_id]
- e_sent_end = self.eda.sent_index.arr[matching.sent_id+1]
- e_sent_len = e_sent_end - e_sent_start - 1
- f_sent_start = self.fda.sent_index.arr[matching.sent_id]
- f_sent_end = self.fda.sent_index.arr[matching.sent_id+1]
- f_sent_len = f_sent_end - f_sent_start - 1
- available_mass = 1.0
- if matching.sent_id == self.excluded_sent_id:
- available_mass = 0.0
-
- self.findexes1.reset()
- sofar = 0
- for i in xrange(num_chunks):
- for j in xrange(chunklen[i]):
- self.findexes1.append(matching.arr[matching.start+i]+j-f_sent_start);
- sofar += 1
- if (i+1<num_chunks):
- self.findexes1.append(phrase[sofar])
- sofar += 1
-
-
- e_links_low = <int*> malloc(e_sent_len*sizeof(int))
- e_links_high = <int*> malloc(e_sent_len*sizeof(int))
- f_links_low = <int*> malloc(f_sent_len*sizeof(int))
- f_links_high = <int*> malloc(f_sent_len*sizeof(int))
- f_gap_low = <int*> malloc((num_chunks+1)*sizeof(int))
- f_gap_high = <int*> malloc((num_chunks+1)*sizeof(int))
- e_gap_low = <int*> malloc((num_chunks+1)*sizeof(int))
- e_gap_high = <int*> malloc((num_chunks+1)*sizeof(int))
- memset(f_gap_low, 0, (num_chunks+1)*sizeof(int))
- memset(f_gap_high, 0, (num_chunks+1)*sizeof(int))
- memset(e_gap_low, 0, (num_chunks+1)*sizeof(int))
- memset(e_gap_high, 0, (num_chunks+1)*sizeof(int))
-
- reason_for_failure = ""
-
- for i from 0 <= i < e_sent_len:
- e_links_low[i] = -1
- e_links_high[i] = -1
- for i from 0 <= i < f_sent_len:
- f_links_low[i] = -1
- f_links_high[i] = -1
-
- # this is really inefficient -- might be good to
- # somehow replace with binary search just for the f
- # links that we care about (but then how to look up
- # when we want to check something on the e side?)
- i = 0
- while i < num_links*2:
- f_i = sent_links[i]
- e_i = sent_links[i+1]
- if f_links_low[f_i] == -1 or f_links_low[f_i] > e_i:
- f_links_low[f_i] = e_i
- if f_links_high[f_i] == -1 or f_links_high[f_i] < e_i + 1:
- f_links_high[f_i] = e_i + 1
- if e_links_low[e_i] == -1 or e_links_low[e_i] > f_i:
- e_links_low[e_i] = f_i
- if e_links_high[e_i] == -1 or e_links_high[e_i] < f_i + 1:
- e_links_high[e_i] = f_i + 1
- i = i + 2
-
- als = []
- for x in xrange(matching.start,matching.end):
- al = (matching.arr[x]-f_sent_start,f_links_low[matching.arr[x]-f_sent_start])
- als.append(al)
- # check all source-side alignment constraints
- met_constraints = 1
- if self.require_aligned_terminal:
- num_aligned_chunks = 0
- for i from 0 <= i < num_chunks:
- for j from 0 <= j < chunklen[i]:
- if f_links_low[matching.arr[matching.start+i]+j-f_sent_start] > -1:
- num_aligned_chunks = num_aligned_chunks + 1
- break
- if num_aligned_chunks == 0:
- reason_for_failure = "No aligned terminals"
- met_constraints = 0
- if self.require_aligned_chunks and num_aligned_chunks < num_chunks:
- reason_for_failure = "Unaligned chunk"
- met_constraints = 0
-
- if met_constraints and self.tight_phrases:
- # outside edge constraints are checked later
- for i from 0 <= i < num_chunks-1:
- if f_links_low[matching.arr[matching.start+i]+chunklen[i]-f_sent_start] == -1:
- reason_for_failure = "Gaps are not tight phrases"
- met_constraints = 0
- break
- if f_links_low[matching.arr[matching.start+i+1]-1-f_sent_start] == -1:
- reason_for_failure = "Gaps are not tight phrases"
- met_constraints = 0
- break
-
- f_low = matching.arr[matching.start] - f_sent_start
- f_high = matching.arr[matching.start + matching.size - 1] + chunklen[num_chunks-1] - f_sent_start
- if met_constraints:
-
- if self.find_fixpoint(f_low, f_high, f_links_low, f_links_high, e_links_low, e_links_high,
- -1, -1, &e_low, &e_high, &f_back_low, &f_back_high, f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- self.train_min_gap_size, 0,
- self.max_nonterminals - num_chunks + 1, 1, 1, 0, 0):
- gap_error = 0
- num_gaps = 0
-
- if f_back_low < f_low:
- f_gap_low[0] = f_back_low
- f_gap_high[0] = f_low
- num_gaps = 1
- gap_start = 0
- phrase_len = phrase_len+1
- if phrase_len > self.max_length:
- gap_error = 1
- if self.tight_phrases:
- if f_links_low[f_back_low] == -1 or f_links_low[f_low-1] == -1:
- gap_error = 1
- reason_for_failure = "Inside edges of preceding subphrase are not tight"
- else:
- gap_start = 1
- if self.tight_phrases and f_links_low[f_low] == -1:
- # this is not a hard error. we can't extract this phrase
- # but we still might be able to extract a superphrase
- met_constraints = 0
-
- for i from 0 <= i < matching.size - 1:
- f_gap_low[1+i] = matching.arr[matching.start+i] + chunklen[i] - f_sent_start
- f_gap_high[1+i] = matching.arr[matching.start+i+1] - f_sent_start
- num_gaps = num_gaps + 1
-
- if f_high < f_back_high:
- f_gap_low[gap_start+num_gaps] = f_high
- f_gap_high[gap_start+num_gaps] = f_back_high
- num_gaps = num_gaps + 1
- phrase_len = phrase_len+1
- if phrase_len > self.max_length:
- gap_error = 1
- if self.tight_phrases:
- if f_links_low[f_back_high-1] == -1 or f_links_low[f_high] == -1:
- gap_error = 1
- reason_for_failure = "Inside edges of following subphrase are not tight"
- else:
- if self.tight_phrases and f_links_low[f_high-1] == -1:
- met_constraints = 0
-
- if gap_error == 0:
- e_word_count = e_high - e_low
- for i from 0 <= i < num_gaps: # check integrity of subphrases
- if self.find_fixpoint(f_gap_low[gap_start+i], f_gap_high[gap_start+i],
- f_links_low, f_links_high, e_links_low, e_links_high,
- -1, -1, e_gap_low+gap_start+i, e_gap_high+gap_start+i,
- f_gap_low+gap_start+i, f_gap_high+gap_start+i,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 0, 0, 0, 0, 0, 0, 0) == 0:
- gap_error = 1
- reason_for_failure = "Subphrase [%d, %d] failed integrity check" % (f_gap_low[gap_start+i], f_gap_high[gap_start+i])
- break
-
- if gap_error == 0:
- i = 1
- self.findexes.reset()
- if f_back_low < f_low:
- fphr_arr._append(sym.setindex(self.category, i))
- i = i+1
- self.findexes.append(sym.setindex(self.category, i))
- self.findexes.extend(self.findexes1)
- for j from 0 <= j < phrase.n:
- if sym.isvar(phrase.syms[j]):
- fphr_arr._append(sym.setindex(self.category, i))
- i = i + 1
- else:
- fphr_arr._append(phrase.syms[j])
- if f_back_high > f_high:
- fphr_arr._append(sym.setindex(self.category, i))
- self.findexes.append(sym.setindex(self.category, i))
-
- fphr = rule.Phrase(fphr_arr)
- if met_constraints:
- phrase_list = self.extract_phrases(e_low, e_high, e_gap_low + gap_start, e_gap_high + gap_start, e_links_low, num_gaps,
- f_back_low, f_back_high, f_gap_low + gap_start, f_gap_high + gap_start, f_links_low,
- matching.sent_id, e_sent_len, e_sent_start)
- #print "e_low=%d, e_high=%d, gap_start=%d, num_gaps=%d, f_back_low=%d, f_back_high=%d" & (e_low, e_high, gap_start, num_gaps, f_back_low, f_back_high)
- if len(phrase_list) > 0:
- pair_count = available_mass / len(phrase_list)
- else:
- pair_count = 0
- reason_for_failure = "Didn't extract anything from [%d, %d] -> [%d, %d]" % (f_back_low, f_back_high, e_low, e_high)
- for (phrase2,eindexes) in phrase_list:
- als1 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
- extracts.append((fphr, phrase2, pair_count, tuple(als1)))
- if self.extract_file:
- self.extract_file.write("%s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_back_low, f_back_high, e_low, e_high))
- #print "extract_phrases1: %s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_back_low, f_back_high, e_low, e_high)
-
- if (num_gaps < self.max_nonterminals and
- phrase_len < self.max_length and
- f_back_high - f_back_low + self.train_min_gap_size <= self.train_max_initial_size):
- if (f_back_low == f_low and
- f_low >= self.train_min_gap_size and
- ((not self.tight_phrases) or (f_links_low[f_low-1] != -1 and f_links_low[f_back_high-1] != -1))):
- f_x_low = f_low-self.train_min_gap_size
- met_constraints = 1
- if self.tight_phrases:
- while f_x_low >= 0 and f_links_low[f_x_low] == -1:
- f_x_low = f_x_low - 1
- if f_x_low < 0 or f_back_high - f_x_low > self.train_max_initial_size:
- met_constraints = 0
-
- if (met_constraints and
- self.find_fixpoint(f_x_low, f_back_high,
- f_links_low, f_links_high, e_links_low, e_links_high,
- e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 1, 1, 1, 1, 0, 1, 0) and
- ((not self.tight_phrases) or f_links_low[f_x_low] != -1) and
- self.find_fixpoint(f_x_low, f_low, # check integrity of new subphrase
- f_links_low, f_links_high, e_links_low, e_links_high,
- -1, -1, e_gap_low, e_gap_high, f_gap_low, f_gap_high,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 0, 0, 0, 0, 0, 0, 0)):
- fphr_arr._clear()
- i = 1
- self.findexes.reset()
- self.findexes.append(sym.setindex(self.category, i))
- fphr_arr._append(sym.setindex(self.category, i))
- i = i+1
- self.findexes.extend(self.findexes1)
- for j from 0 <= j < phrase.n:
- if sym.isvar(phrase.syms[j]):
- fphr_arr._append(sym.setindex(self.category, i))
- i = i + 1
- else:
- fphr_arr._append(phrase.syms[j])
- if f_back_high > f_high:
- fphr_arr._append(sym.setindex(self.category, i))
- self.findexes.append(sym.setindex(self.category, i))
- fphr = rule.Phrase(fphr_arr)
- phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low, e_gap_high, e_links_low, num_gaps+1,
- f_x_low, f_x_high, f_gap_low, f_gap_high, f_links_low, matching.sent_id,
- e_sent_len, e_sent_start)
- if len(phrase_list) > 0:
- pair_count = available_mass / len(phrase_list)
- else:
- pair_count = 0
- for phrase2,eindexes in phrase_list:
- als2 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
- extracts.append((fphr, phrase2, pair_count, tuple(als2)))
- if self.extract_file:
- self.extract_file.write("%s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_x_low, f_x_high, e_x_low, e_x_high))
- #print "extract_phrases2: %s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_x_low, f_x_high, e_x_low, e_x_high)
-
- if (f_back_high == f_high and
- f_sent_len - f_high >= self.train_min_gap_size and
- ((not self.tight_phrases) or (f_links_low[f_high] != -1 and f_links_low[f_back_low] != -1))):
- f_x_high = f_high+self.train_min_gap_size
- met_constraints = 1
- if self.tight_phrases:
- while f_x_high <= f_sent_len and f_links_low[f_x_high-1] == -1:
- f_x_high = f_x_high + 1
- if f_x_high > f_sent_len or f_x_high - f_back_low > self.train_max_initial_size:
- met_constraints = 0
-
- if (met_constraints and
- self.find_fixpoint(f_back_low, f_x_high,
- f_links_low, f_links_high, e_links_low, e_links_high,
- e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 1, 1, 1, 0, 1, 1, 0) and
- ((not self.tight_phrases) or f_links_low[f_x_high-1] != -1) and
- self.find_fixpoint(f_high, f_x_high,
- f_links_low, f_links_high, e_links_low, e_links_high,
- -1, -1, e_gap_low+gap_start+num_gaps, e_gap_high+gap_start+num_gaps,
- f_gap_low+gap_start+num_gaps, f_gap_high+gap_start+num_gaps,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 0, 0, 0, 0, 0, 0, 0)):
- fphr_arr._clear()
- i = 1
- self.findexes.reset()
- if f_back_low < f_low:
- fphr_arr._append(sym.setindex(self.category, i))
- i = i+1
- self.findexes.append(sym.setindex(self.category, i))
- self.findexes.extend(self.findexes1)
- for j from 0 <= j < phrase.n:
- if sym.isvar(phrase.syms[j]):
- fphr_arr._append(sym.setindex(self.category, i))
- i = i + 1
- else:
- fphr_arr._append(phrase.syms[j])
- fphr_arr._append(sym.setindex(self.category, i))
- self.findexes.append(sym.setindex(self.category, i))
- fphr = rule.Phrase(fphr_arr)
- phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low+gap_start, e_gap_high+gap_start, e_links_low, num_gaps+1,
- f_x_low, f_x_high, f_gap_low+gap_start, f_gap_high+gap_start, f_links_low,
- matching.sent_id, e_sent_len, e_sent_start)
- if len(phrase_list) > 0:
- pair_count = available_mass / len(phrase_list)
- else:
- pair_count = 0
- for phrase2, eindexes in phrase_list:
- als3 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
- extracts.append((fphr, phrase2, pair_count, tuple(als3)))
- if self.extract_file:
- self.extract_file.write("%s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_x_low, f_x_high, e_x_low, e_x_high))
- #print "extract_phrases3: %s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_x_low, f_x_high, e_x_low, e_x_high)
- if (num_gaps < self.max_nonterminals - 1 and
- phrase_len+1 < self.max_length and
- f_back_high == f_high and
- f_back_low == f_low and
- f_back_high - f_back_low + (2*self.train_min_gap_size) <= self.train_max_initial_size and
- f_low >= self.train_min_gap_size and
- f_high <= f_sent_len - self.train_min_gap_size and
- ((not self.tight_phrases) or (f_links_low[f_low-1] != -1 and f_links_low[f_high] != -1))):
-
- met_constraints = 1
- f_x_low = f_low-self.train_min_gap_size
- if self.tight_phrases:
- while f_x_low >= 0 and f_links_low[f_x_low] == -1:
- f_x_low = f_x_low - 1
- if f_x_low < 0:
- met_constraints = 0
-
- f_x_high = f_high+self.train_min_gap_size
- if self.tight_phrases:
- while f_x_high <= f_sent_len and f_links_low[f_x_high-1] == -1:
- f_x_high = f_x_high + 1
- if f_x_high > f_sent_len or f_x_high - f_x_low > self.train_max_initial_size:
- met_constraints = 0
-
- if (met_constraints and
- self.find_fixpoint(f_x_low, f_x_high,
- f_links_low, f_links_high, e_links_low, e_links_high,
- e_low, e_high, &e_x_low, &e_x_high, &f_x_low, &f_x_high,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 1, 1, 2, 1, 1, 1, 1) and
- ((not self.tight_phrases) or (f_links_low[f_x_low] != -1 and f_links_low[f_x_high-1] != -1)) and
- self.find_fixpoint(f_x_low, f_low,
- f_links_low, f_links_high, e_links_low, e_links_high,
- -1, -1, e_gap_low, e_gap_high, f_gap_low, f_gap_high,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 0, 0, 0, 0, 0, 0, 0) and
- self.find_fixpoint(f_high, f_x_high,
- f_links_low, f_links_high, e_links_low, e_links_high,
- -1, -1, e_gap_low+1+num_gaps, e_gap_high+1+num_gaps,
- f_gap_low+1+num_gaps, f_gap_high+1+num_gaps,
- f_sent_len, e_sent_len,
- self.train_max_initial_size, self.train_max_initial_size,
- 0, 0, 0, 0, 0, 0, 0)):
- fphr_arr._clear()
- i = 1
- self.findexes.reset()
- self.findexes.append(sym.setindex(self.category, i))
- fphr_arr._append(sym.setindex(self.category, i))
- i = i+1
- self.findexes.extend(self.findexes1)
- for j from 0 <= j < phrase.n:
- if sym.isvar(phrase.syms[j]):
- fphr_arr._append(sym.setindex(self.category, i))
- i = i + 1
- else:
- fphr_arr._append(phrase.syms[j])
- fphr_arr._append(sym.setindex(self.category, i))
- self.findexes.append(sym.setindex(self.category, i))
- fphr = rule.Phrase(fphr_arr)
- phrase_list = self.extract_phrases(e_x_low, e_x_high, e_gap_low, e_gap_high, e_links_low, num_gaps+2,
- f_x_low, f_x_high, f_gap_low, f_gap_high, f_links_low,
- matching.sent_id, e_sent_len, e_sent_start)
- if len(phrase_list) > 0:
- pair_count = available_mass / len(phrase_list)
- else:
- pair_count = 0
- for phrase2, eindexes in phrase_list:
- als4 = self.create_alignments(sent_links,num_links,self.findexes,eindexes)
- extracts.append((fphr, phrase2, pair_count, tuple(als4)))
- if self.extract_file:
- self.extract_file.write("%s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_x_low, f_x_high, e_x_low, e_x_high))
- #print "extract_phrases4 %s ||| %s ||| %f ||| %d: [%d, %d] -> [%d, %d]\n" % (fphr, phrase2, pair_count, matching.sent_id+1, f_x_low, f_x_high, e_x_low, e_x_high)
- else:
- reason_for_failure = "Unable to extract basic phrase"
-
- free(sent_links)
- free(f_links_low)
- free(f_links_high)
- free(e_links_low)
- free(e_links_high)
- free(f_gap_low)
- free(f_gap_high)
- free(e_gap_low)
- free(e_gap_high)
-
- if self.sample_file is not None:
- self.sample_file.write("%s ||| %d: [%d, %d] ||| %d ||| %s\n" % (phrase, matching.sent_id+1, f_low, f_high, len(extracts), reason_for_failure))
-
- #print "%s ||| %d: [%d, %d] ||| %d ||| %s\n" % (phrase, matching.sent_id+1, f_low, f_high, len(extracts), reason_for_failure)
-
-
- return extracts
-