diff options
author | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-08-01 17:32:37 +0200 |
---|---|---|
committer | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-08-01 17:32:37 +0200 |
commit | 3f8e33cfe481a09c121a410e66a6074b5d05683e (patch) | |
tree | a41ecaf0bbb69fa91a581623abe89d41219c04f8 /sa-extract/precomputation.pyx | |
parent | c139ce495861bb341e1b86a85ad4559f9ad53c14 (diff) | |
parent | 9fe0219562e5db25171cce8776381600ff9a5649 (diff) |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'sa-extract/precomputation.pyx')
-rw-r--r-- | sa-extract/precomputation.pyx | 478 |
1 files changed, 0 insertions, 478 deletions
diff --git a/sa-extract/precomputation.pyx b/sa-extract/precomputation.pyx deleted file mode 100644 index ce4c21aa..00000000 --- a/sa-extract/precomputation.pyx +++ /dev/null @@ -1,478 +0,0 @@ -# precomputes a set of collocations by advancing over the text. -# warning: nasty C code - -import log -import monitor - -cimport csuf -cimport cdat -cimport cintlist - -from libc.stdio cimport FILE, fopen, fread, fwrite, fclose -from libc.stdlib cimport malloc, realloc, free -from libc.string cimport memset, memcpy - -cdef struct _Trie_Node # forward decl - -cdef struct _Trie_Edge: - int val - _Trie_Node* node - _Trie_Edge* bigger - _Trie_Edge* smaller - -cdef struct _Trie_Node: - _Trie_Edge* root - int* arr - int arr_len - -cdef _Trie_Node* new_trie_node(): - cdef _Trie_Node* node - node = <_Trie_Node*> malloc(sizeof(_Trie_Node)) - node.root = NULL - node.arr_len = 0 - node.arr = <int*> malloc(sizeof(0*sizeof(int))) - return node - -cdef _Trie_Edge* new_trie_edge(int val): - cdef _Trie_Edge* edge - edge = <_Trie_Edge*> malloc(sizeof(_Trie_Edge)) - edge.node = new_trie_node() - edge.bigger = NULL - edge.smaller = NULL - edge.val = val - return edge - -cdef free_trie_node(_Trie_Node* node): - if node != NULL: - free_trie_edge(node.root) - free(node.arr) - -cdef free_trie_edge(_Trie_Edge* edge): - if edge != NULL: - free_trie_node(edge.node) - free_trie_edge(edge.bigger) - free_trie_edge(edge.smaller) - -cdef _Trie_Node* trie_find(_Trie_Node* node, int val): - cdef _Trie_Edge* cur - cur = node.root - while cur != NULL and cur.val != val: - if val > cur.val: - cur = cur.bigger - elif val < cur.val: - cur = cur.smaller - if cur == NULL: - return NULL - else: - return cur.node - -cdef trie_node_data_append(_Trie_Node* node, int val): - cdef int new_len - new_len = node.arr_len + 1 - node.arr = <int*> realloc(node.arr, new_len*sizeof(int)) - node.arr[node.arr_len] = val - node.arr_len = new_len - -cdef trie_node_data_extend(_Trie_Node* node, int* vals, int num_vals): - cdef int new_len - new_len = node.arr_len + num_vals - node.arr = <int*> realloc(node.arr, new_len*sizeof(int)) - memcpy(node.arr + node.arr_len, vals, num_vals*sizeof(int)) - node.arr_len = new_len - - -cdef _Trie_Node* trie_insert(_Trie_Node* node, int val): - cdef _Trie_Edge** cur - cur = &node.root - while cur[0] != NULL and cur[0].val != val: - if val > cur[0].val: - cur = &cur[0].bigger - elif val < cur[0].val: - cur = &cur[0].smaller - if cur[0] == NULL: - cur[0] = new_trie_edge(val) - return cur[0].node - -cdef trie_node_to_map(_Trie_Node* node, result, prefix, int include_zeros): - cdef cintlist.CIntList arr - - if include_zeros or node.arr_len > 0: - arr = cintlist.CIntList() - free(arr.arr) - arr.arr = <int*> malloc(node.arr_len * sizeof(int)) - memcpy(arr.arr, node.arr, node.arr_len * sizeof(int)) - arr.len = node.arr_len - arr.size = node.arr_len - result[prefix] = arr - trie_edge_to_map(node.root, result, prefix, include_zeros) - -cdef trie_edge_to_map(_Trie_Edge* edge, result, prefix, int include_zeros): - if edge != NULL: - trie_edge_to_map(edge.smaller, result, prefix, include_zeros) - trie_edge_to_map(edge.bigger, result, prefix, include_zeros) - prefix = prefix + (edge.val,) - trie_node_to_map(edge.node, result, prefix, include_zeros) - -cdef class TrieMap: - - cdef _Trie_Node** root - cdef int V - - def __init__(self, alphabet_size): - self.V = alphabet_size - self.root = <_Trie_Node**> malloc(self.V * sizeof(_Trie_Node*)) - memset(self.root, 0, self.V * sizeof(_Trie_Node*)) - - - def __dealloc__(self): - cdef int i - for i from 0 <= i < self.V: - if self.root[i] != NULL: - free_trie_node(self.root[i]) - free(self.root) - - - def insert(self, pattern): - cdef int* p - cdef int i, l - l = len(pattern) - p = <int*> malloc(l*sizeof(int)) - for i from 0 <= i < l: - p[i] = pattern[i] - self._insert(p,l) - free(p) - - - cdef _Trie_Node* _insert(self, int* pattern, int pattern_len): - cdef int i - cdef _Trie_Node* node - if self.root[pattern[0]] == NULL: - self.root[pattern[0]] = new_trie_node() - node = self.root[pattern[0]] - for i from 1 <= i < pattern_len: - node = trie_insert(node, pattern[i]) - return node - - def contains(self, pattern): - cdef int* p - cdef int i, l - cdef _Trie_Node* node - l = len(pattern) - p = <int*> malloc(l*sizeof(int)) - for i from 0 <= i < l: - p[i] = pattern[i] - node = self._contains(p,l) - free(p) - if node == NULL: - return False - else: - return True - - cdef _Trie_Node* _contains(self, int* pattern, int pattern_len): - cdef int i - cdef _Trie_Node* node - node = self.root[pattern[0]] - i = 1 - while node != NULL and i < pattern_len: - node = trie_find(node, pattern[i]) - i = i+1 - return node - - def toMap(self, flag): - cdef int i, include_zeros - - if flag: - include_zeros=1 - else: - include_zeros=0 - result = {} - for i from 0 <= i < self.V: - if self.root[i] != NULL: - trie_node_to_map(self.root[i], result, (i,), include_zeros) - return result - - -cdef class Precomputation: - -# Defined in .pxd file, here for reference: -# cdef int precompute_rank -# cdef int precompute_secondary_rank -# cdef int max_length -# cdef int max_nonterminals -# cdef int train_max_initial_size -# cdef int train_min_gap_size -# cdef precomputed_index -# cdef precomputed_collocations - - def __init__(self, filename, sa=None, precompute_rank=1000, precompute_secondary_rank=20, max_length=5, - max_nonterminals=2, train_max_initial_size=10, train_min_gap_size=2, from_binary=False): - self.precompute_rank = precompute_rank - self.precompute_secondary_rank = precompute_secondary_rank - self.max_length = max_length - self.max_nonterminals = max_nonterminals - self.train_max_initial_size = train_max_initial_size - self.train_min_gap_size = train_min_gap_size - if from_binary: - self.read_binary(filename) - else: - self.precompute(filename, sa) - - - def read_binary(self, filename): - cdef FILE* f - cdef bytes bfilename = filename - cdef char* cfilename = bfilename - f = fopen(cfilename, "r") - fread(&(self.precompute_rank), sizeof(int), 1, f) - fread(&(self.precompute_secondary_rank), sizeof(int), 1, f) - fread(&(self.max_length), sizeof(int), 1, f) - fread(&(self.max_nonterminals), sizeof(int), 1, f) - fread(&(self.train_max_initial_size), sizeof(int), 1, f) - fread(&(self.train_min_gap_size), sizeof(int), 1, f) - self.precomputed_index = self.read_map(f) - self.precomputed_collocations = self.read_map(f) - fclose(f) - - - def write_binary(self, filename): - cdef FILE* f - cdef bytes bfilename = filename - cdef char* cfilename = bfilename - - f = fopen(cfilename, "w") - fwrite(&(self.precompute_rank), sizeof(int), 1, f) - fwrite(&(self.precompute_secondary_rank), sizeof(int), 1, f) - fwrite(&(self.max_length), sizeof(int), 1, f) - fwrite(&(self.max_nonterminals), sizeof(int), 1, f) - fwrite(&(self.train_max_initial_size), sizeof(int), 1, f) - fwrite(&(self.train_min_gap_size), sizeof(int), 1, f) - self.write_map(self.precomputed_index, f) - self.write_map(self.precomputed_collocations, f) - fclose(f) - - - cdef write_map(self, m, FILE* f): - cdef int i, N - cdef cintlist.CIntList arr - - N = len(m) - fwrite(&(N), sizeof(int), 1, f) - for pattern, val in m.iteritems(): - N = len(pattern) - fwrite(&(N), sizeof(int), 1, f) - for word_id in pattern: - i = word_id - fwrite(&(i), sizeof(int), 1, f) - arr = val - arr.write_handle(f) - - - cdef read_map(self, FILE* f): - cdef int i, j, k, word_id, N - cdef cintlist.CIntList arr - - m = {} - fread(&(N), sizeof(int), 1, f) - for j from 0 <= j < N: - fread(&(i), sizeof(int), 1, f) - key = () - for k from 0 <= k < i: - fread(&(word_id), sizeof(int), 1, f) - key = key + (word_id,) - arr = cintlist.CIntList() - arr.read_handle(f) - m[key] = arr - return m - - - def precompute(self, filename, sa): - cdef int i, l, N, max_pattern_len, i1, l1, i2, l2, i3, l3, ptr1, ptr2, ptr3, is_super, sent_count, max_rank - cdef csuf.SuffixArray sarray - cdef cdat.DataArray darray - cdef cintlist.CIntList data, queue, cost_by_rank, count_by_rank - cdef TrieMap frequent_patterns, super_frequent_patterns, collocations - cdef _Trie_Node* node - - sarray = sa - darray = sarray.darray - data = darray.data - - frequent_patterns = TrieMap(len(darray.id2word)) - super_frequent_patterns = TrieMap(len(darray.id2word)) - collocations = TrieMap(len(darray.id2word)) - - I_set = set() - J_set = set() - J2_set = set() - IJ_set = set() - pattern_rank = {} - - log.writeln("Precomputing frequent intersections\n", 1) - start_time = monitor.cpu() - - max_pattern_len = 0 - if filename is not None: - precompute_file = open(filename) - for rank, line in enumerate(precompute_file): - if rank >= self.precompute_rank: - break - phrase_words = line.split()[2:] - phrase = () - for word in phrase_words: - phrase = phrase + (darray.word2id[word],) - max_pattern_len = max(max_pattern_len, len(phrase)) - frequent_patterns.insert(phrase) - I_set.add(phrase) - pattern_rank[phrase] = rank - if rank < self.precompute_secondary_rank: - super_frequent_patterns.insert(phrase) - J_set.add(phrase) - precompute_file.close() - - queue = cintlist.CIntList(increment=1000) - - log.writeln(" Computing inverted indexes...", 1) - N = len(data) - for i from 0 <= i < N: - sa_word_id = data.arr[i] - if sa_word_id == 1: - queue._append(-1) - else: - for l from 1 <= l <= max_pattern_len: - node = frequent_patterns._contains(data.arr+i, l) - if node == NULL: - break - queue._append(i) - queue._append(l) - trie_node_data_append(node, i) - - log.writeln(" Computing collocations...", 1) - N = len(queue) - ptr1 = 0 - sent_count = 0 - while ptr1 < N: # main loop - i1 = queue.arr[ptr1] - if i1 > -1: - l1 = queue.arr[ptr1+1] - ptr2 = ptr1 + 2 - while ptr2 < N: - i2 = queue.arr[ptr2] - if i2 == -1 or i2 - i1 >= self.train_max_initial_size: - break - l2 = queue.arr[ptr2+1] - if i2 - i1 - l1 >= self.train_min_gap_size and i2 + l2 - i1 <= self.train_max_initial_size and l1+l2+1 <= self.max_length: - node = collocations._insert(data.arr+i1, l1) - node = trie_insert(node, -1) - for i from i2 <= i < i2+l2: - node = trie_insert(node, data.arr[i]) - trie_node_data_append(node, i1) - trie_node_data_append(node, i2) - if super_frequent_patterns._contains(data.arr+i2, l2) != NULL: - if super_frequent_patterns._contains(data.arr+i1, l1) != NULL: - is_super = 1 - else: - is_super = 0 - ptr3 = ptr2 + 2 - while ptr3 < N: - i3 = queue.arr[ptr3] - if i3 == -1 or i3 - i1 >= self.train_max_initial_size: - break - l3 = queue.arr[ptr3+1] - if i3 - i2 - l2 >= self.train_min_gap_size and i3 + l3 - i1 <= self.train_max_initial_size and l1+l2+l3+2 <= self.max_length: - if is_super or super_frequent_patterns._contains(data.arr+i3, l3) != NULL: - node = collocations._insert(data.arr+i1, l1) - node = trie_insert(node, -1) - for i from i2 <= i < i2+l2: - node = trie_insert(node, data.arr[i]) - node = trie_insert(node, -1) - for i from i3 <= i < i3+l3: - node = trie_insert(node, data.arr[i]) - trie_node_data_append(node, i1) - trie_node_data_append(node, i2) - trie_node_data_append(node, i3) - ptr3 = ptr3 + 2 - ptr2 = ptr2 + 2 - ptr1 = ptr1 + 2 - else: - sent_count = sent_count + 1 - if sent_count % 10000 == 0: - log.writeln(" %d sentences" % sent_count) - ptr1 = ptr1 + 1 - - self.precomputed_collocations = collocations.toMap(False) - self.precomputed_index = frequent_patterns.toMap(True) - - x = 0 - for pattern1 in J_set: - for pattern2 in J_set: - if len(pattern1) + len(pattern2) + 1 < self.max_length: - combined_pattern = pattern1 + (-1,) + pattern2 - J2_set.add(combined_pattern) - - for pattern1 in I_set: - for pattern2 in I_set: - x = x+1 - if len(pattern1) + len(pattern2) + 1 <= self.max_length: - combined_pattern = pattern1 + (-1,) + pattern2 - IJ_set.add(combined_pattern) - - for pattern1 in I_set: - for pattern2 in J2_set: - x = x+2 - if len(pattern1) + len(pattern2) + 1<= self.max_length: - combined_pattern = pattern1 + (-1,) + pattern2 - IJ_set.add(combined_pattern) - combined_pattern = pattern2 + (-1,) + pattern1 - IJ_set.add(combined_pattern) - - N = len(pattern_rank) - cost_by_rank = cintlist.CIntList(initial_len=N) - count_by_rank = cintlist.CIntList(initial_len=N) - for pattern, arr in self.precomputed_collocations.iteritems(): - if pattern not in IJ_set: - s = "" - for word_id in pattern: - if word_id == -1: - s = s + "X " - else: - s = s + darray.id2word[word_id] + " " - log.writeln("ERROR: unexpected pattern %s in set of precomputed collocations" % (s), 1) - else: - chunk = () - max_rank = 0 - arity = 0 - for word_id in pattern: - if word_id == -1: - max_rank = max(max_rank, pattern_rank[chunk]) - arity = arity + 1 - chunk = () - else: - chunk = chunk + (word_id,) - max_rank = max(max_rank, pattern_rank[chunk]) - cost_by_rank.arr[max_rank] = cost_by_rank.arr[max_rank] + (4*len(arr)) - count_by_rank.arr[max_rank] = count_by_rank.arr[max_rank] + (len(arr)/(arity+1)) - - cumul_cost = 0 - cumul_count = 0 - for i from 0 <= i < N: - cumul_cost = cumul_cost + cost_by_rank.arr[i] - cumul_count = cumul_count + count_by_rank.arr[i] - log.writeln("RANK %d\tCOUNT, COST: %d %d\tCUMUL: %d, %d" % (i, count_by_rank.arr[i], cost_by_rank.arr[i], cumul_count, cumul_cost)) - - num_found_patterns = len(self.precomputed_collocations) - for pattern in IJ_set: - if pattern not in self.precomputed_collocations: - self.precomputed_collocations[pattern] = cintlist.CIntList() - - stop_time = monitor.cpu() - log.writeln("Precomputed collocations for %d patterns out of %d possible (upper bound %d)" % (num_found_patterns,len(self.precomputed_collocations),x)) - log.writeln("Precomputed inverted index for %d patterns " % len(self.precomputed_index)) - log.writeln("Precomputation took %f seconds" % (stop_time - start_time)) - log.writeln("Detailed statistics:") - - - - - - - |