diff options
author | Patrick Simianer <p@simianer.de> | 2011-10-19 14:02:34 +0200 |
---|---|---|
committer | Patrick Simianer <p@simianer.de> | 2011-10-19 14:02:34 +0200 |
commit | eb14e36d0b29f19321d44dd7dfa73cc703838d86 (patch) | |
tree | 1285e9e56959bc3a4b506e36bbc3b49f4e938fa0 /pro-train/mr_pro_map.cc | |
parent | 68f158b11df9f4072699fe6a4c8022ea54102b28 (diff) | |
parent | 04e38a57b19ea012895ac2efb39382c2e77833a9 (diff) |
merge upstream/master
Diffstat (limited to 'pro-train/mr_pro_map.cc')
-rw-r--r-- | pro-train/mr_pro_map.cc | 347 |
1 files changed, 347 insertions, 0 deletions
diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc new file mode 100644 index 00000000..0a9b75d7 --- /dev/null +++ b/pro-train/mr_pro_map.cc @@ -0,0 +1,347 @@ +#include <sstream> +#include <iostream> +#include <fstream> +#include <vector> +#include <tr1/unordered_map> + +#include <boost/functional/hash.hpp> +#include <boost/shared_ptr.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "sampler.h" +#include "filelib.h" +#include "stringlib.h" +#include "weights.h" +#include "scorer.h" +#include "inside_outside.h" +#include "hg_io.h" +#include "kbest.h" +#include "viterbi.h" + +// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011) + +using namespace std; +namespace po = boost::program_options; + +struct ApproxVectorHasher { + static const size_t MASK = 0xFFFFFFFFull; + union UType { + double f; // leave as double + size_t i; + }; + static inline double round(const double x) { + UType t; + t.f = x; + size_t r = t.i & MASK; + if ((r << 1) > MASK) + t.i += MASK - r + 1; + else + t.i &= (1ull - MASK); + return t.f; + } + size_t operator()(const SparseVector<weight_t>& x) const { + size_t h = 0x573915839; + for (SparseVector<weight_t>::const_iterator it = x.begin(); it != x.end(); ++it) { + UType t; + t.f = it->second; + if (t.f) { + size_t z = (t.i >> 32); + boost::hash_combine(h, it->first); + boost::hash_combine(h, z); + } + } + return h; + } +}; + +struct ApproxVectorEquals { + bool operator()(const SparseVector<weight_t>& a, const SparseVector<weight_t>& b) const { + SparseVector<weight_t>::const_iterator bit = b.begin(); + for (SparseVector<weight_t>::const_iterator ait = a.begin(); ait != a.end(); ++ait) { + if (bit == b.end() || + ait->first != bit->first || + ApproxVectorHasher::round(ait->second) != ApproxVectorHasher::round(bit->second)) + return false; + ++bit; + } + if (bit != b.end()) return false; + return true; + } +}; + +boost::shared_ptr<MT19937> rng; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)") + ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations") + ("kbest_repository,K",po::value<string>()->default_value("./kbest"),"K-best list repository (directory)") + ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)") + ("source,s",po::value<string>()->default_value(""), "Source file (ignored, except for AER)") + ("loss_function,l",po::value<string>()->default_value("ibm_bleu"), "Loss function being optimized") + ("kbest_size,k",po::value<unsigned>()->default_value(1500u), "Top k-hypotheses to extract") + ("candidate_pairs,G", po::value<unsigned>()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)") + ("best_pairs,X", po::value<unsigned>()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)") + ("random_seed,S", po::value<uint32_t>(), "Random seed (if not specified, /dev/random will be used)") + ("help,h", "Help"); + po::options_description dcmdline_options; + dcmdline_options.add(opts); + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + bool flag = false; + if (!conf->count("reference")) { + cerr << "Please specify one or more references using -r <REF.TXT>\n"; + flag = true; + } + if (!conf->count("weights")) { + cerr << "Please specify weights using -w <WEIGHTS.TXT>\n"; + flag = true; + } + if (flag || conf->count("help")) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +struct HypInfo { + HypInfo() : g_(-100.0f) {} + HypInfo(const vector<WordID>& h, const SparseVector<weight_t>& feats) : hyp(h), g_(-100.0f), x(feats) {} + + // lazy evaluation + double g(const SentenceScorer& scorer) const { + if (g_ == -100.0f) + g_ = scorer.ScoreCandidate(hyp)->ComputeScore(); + return g_; + } + vector<WordID> hyp; + mutable float g_; + SparseVector<weight_t> x; +}; + +struct HypInfoCompare { + bool operator()(const HypInfo& a, const HypInfo& b) const { + ApproxVectorEquals comp; + return (a.hyp == b.hyp && comp(a.x,b.x)); + } +}; + +struct HypInfoHasher { + size_t operator()(const HypInfo& x) const { + boost::hash<vector<WordID> > hhasher; + ApproxVectorHasher vhasher; + size_t ha = hhasher(x.hyp); + boost::hash_combine(ha, vhasher(x.x)); + return ha; + } +}; + +void WriteKBest(const string& file, const vector<HypInfo>& kbest) { + WriteFile wf(file); + ostream& out = *wf.stream(); + out.precision(10); + for (int i = 0; i < kbest.size(); ++i) { + out << TD::GetString(kbest[i].hyp) << endl; + out << kbest[i].x << endl; + } +} + +void ParseSparseVector(string& line, size_t cur, SparseVector<weight_t>* out) { + SparseVector<weight_t>& x = *out; + size_t last_start = cur; + size_t last_comma = string::npos; + while(cur <= line.size()) { + if (line[cur] == ' ' || cur == line.size()) { + if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) { + cerr << "[ERROR] " << line << endl << " position = " << cur << endl; + exit(1); + } + const int fid = FD::Convert(line.substr(last_start, last_comma - last_start)); + if (cur < line.size()) line[cur] = 0; + const double val = strtod(&line[last_comma + 1], NULL); + x.set_value(fid, val); + + last_comma = string::npos; + last_start = cur+1; + } else { + if (line[cur] == '=') + last_comma = cur; + } + ++cur; + } +} + +void ReadKBest(const string& file, vector<HypInfo>* kbest) { + cerr << "Reading from " << file << endl; + ReadFile rf(file); + istream& in = *rf.stream(); + string cand; + string feats; + while(getline(in, cand)) { + getline(in, feats); + assert(in); + kbest->push_back(HypInfo()); + TD::ConvertSentence(cand, &kbest->back().hyp); + ParseSparseVector(feats, 0, &kbest->back().x); + } + cerr << " read " << kbest->size() << " hypotheses\n"; +} + +void Dedup(vector<HypInfo>* h) { + cerr << "Dedup in=" << h->size(); + tr1::unordered_set<HypInfo, HypInfoHasher, HypInfoCompare> u; + while(h->size() > 0) { + u.insert(h->back()); + h->pop_back(); + } + tr1::unordered_set<HypInfo, HypInfoHasher, HypInfoCompare>::iterator it = u.begin(); + while (it != u.end()) { + h->push_back(*it); + it = u.erase(it); + } + cerr << " out=" << h->size() << endl; +} + +struct ThresholdAlpha { + explicit ThresholdAlpha(double t = 0.05) : threshold(t) {} + double operator()(double mag) const { + if (mag < threshold) return 0.0; else return 1.0; + } + const double threshold; +}; + +struct TrainingInstance { + TrainingInstance(const SparseVector<weight_t>& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {} + SparseVector<weight_t> x; +#undef DEBUGGING_PRO +#ifdef DEBUGGING_PRO + vector<WordID> a; + vector<WordID> b; +#endif + bool y; + float gdiff; +}; +#ifdef DEBUGGING_PRO +ostream& operator<<(ostream& os, const TrainingInstance& d) { + return os << d.gdiff << " y=" << d.y << "\tA:" << TD::GetString(d.a) << "\n\tB: " << TD::GetString(d.b) << "\n\tX: " << d.x; +} +#endif + +struct DiffOrder { + bool operator()(const TrainingInstance& a, const TrainingInstance& b) const { + return a.gdiff > b.gdiff; + } +}; + +void Sample(const unsigned gamma, const unsigned xi, const vector<HypInfo>& J_i, const SentenceScorer& scorer, const bool invert_score, vector<TrainingInstance>* pv) { + vector<TrainingInstance> v1, v2; + float avg_diff = 0; + for (unsigned i = 0; i < gamma; ++i) { + const size_t a = rng->inclusive(0, J_i.size() - 1)(); + const size_t b = rng->inclusive(0, J_i.size() - 1)(); + if (a == b) continue; + float ga = J_i[a].g(scorer); + float gb = J_i[b].g(scorer); + bool positive = gb < ga; + if (invert_score) positive = !positive; + const float gdiff = fabs(ga - gb); + if (!gdiff) continue; + avg_diff += gdiff; + SparseVector<weight_t> xdiff = (J_i[a].x - J_i[b].x).erase_zeros(); + if (xdiff.empty()) { + cerr << "Empty diff:\n " << TD::GetString(J_i[a].hyp) << endl << "x=" << J_i[a].x << endl; + cerr << " " << TD::GetString(J_i[b].hyp) << endl << "x=" << J_i[b].x << endl; + continue; + } + v1.push_back(TrainingInstance(xdiff, positive, gdiff)); +#ifdef DEBUGGING_PRO + v1.back().a = J_i[a].hyp; + v1.back().b = J_i[b].hyp; + cerr << "N: " << v1.back() << endl; +#endif + } + avg_diff /= v1.size(); + + for (unsigned i = 0; i < v1.size(); ++i) { + double p = 1.0 / (1.0 + exp(-avg_diff - v1[i].gdiff)); + // cerr << "avg_diff=" << avg_diff << " gdiff=" << v1[i].gdiff << " p=" << p << endl; + if (rng->next() < p) v2.push_back(v1[i]); + } + vector<TrainingInstance>::iterator mid = v2.begin() + xi; + if (xi > v2.size()) mid = v2.end(); + partial_sort(v2.begin(), mid, v2.end(), DiffOrder()); + copy(v2.begin(), mid, back_inserter(*pv)); +#ifdef DEBUGGING_PRO + if (v2.size() >= 5) { + for (int i =0; i < (mid - v2.begin()); ++i) { + cerr << v2[i] << endl; + } + cerr << pv->back() << endl; + } +#endif +} + +int main(int argc, char** argv) { + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + if (conf.count("random_seed")) + rng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); + else + rng.reset(new MT19937); + const string loss_function = conf["loss_function"].as<string>(); + + ScoreType type = ScoreTypeFromString(loss_function); + DocScorer ds(type, conf["reference"].as<vector<string> >(), conf["source"].as<string>()); + cerr << "Loaded " << ds.size() << " references for scoring with " << loss_function << endl; + Hypergraph hg; + string last_file; + ReadFile in_read(conf["input"].as<string>()); + istream &in=*in_read.stream(); + const unsigned kbest_size = conf["kbest_size"].as<unsigned>(); + const unsigned gamma = conf["candidate_pairs"].as<unsigned>(); + const unsigned xi = conf["best_pairs"].as<unsigned>(); + string weightsf = conf["weights"].as<string>(); + vector<weight_t> weights; + Weights::InitFromFile(weightsf, &weights); + string kbest_repo = conf["kbest_repository"].as<string>(); + MkDirP(kbest_repo); + while(in) { + vector<TrainingInstance> v; + string line; + getline(in, line); + if (line.empty()) continue; + istringstream is(line); + int sent_id; + string file; + // path-to-file (JSON) sent_id + is >> file >> sent_id; + ReadFile rf(file); + ostringstream os; + vector<HypInfo> J_i; + os << kbest_repo << "/kbest." << sent_id << ".txt.gz"; + const string kbest_file = os.str(); + if (FileExists(kbest_file)) + ReadKBest(kbest_file, &J_i); + HypergraphIO::ReadFromJSON(rf.stream(), &hg); + hg.Reweight(weights); + KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(hg, kbest_size); + + for (int i = 0; i < kbest_size; ++i) { + const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d = + kbest.LazyKthBest(hg.nodes_.size() - 1, i); + if (!d) break; + J_i.push_back(HypInfo(d->yield, d->feature_values)); + } + Dedup(&J_i); + WriteKBest(kbest_file, J_i); + + Sample(gamma, xi, J_i, *ds[sent_id], (type == TER), &v); + for (unsigned i = 0; i < v.size(); ++i) { + const TrainingInstance& vi = v[i]; + cout << vi.y << "\t" << vi.x << endl; + cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl; + } + } + return 0; +} + |