summaryrefslogtreecommitdiff
path: root/minrisk/minrisk_optimize.cc
diff options
context:
space:
mode:
authorPatrick Simianer <simianer@cl.uni-heidelberg.de>2012-06-26 14:47:46 +0200
committerPatrick Simianer <simianer@cl.uni-heidelberg.de>2012-06-26 14:47:46 +0200
commit3c03e716a8638163a820dbecf652c772e6d651f2 (patch)
tree255e2aa075b9a4c2a2fb1c077e899afdc5654c19 /minrisk/minrisk_optimize.cc
parentd04c516536db996e5fe5b94b8e5dea4ce2e04b4a (diff)
parente1b85b4f02045c62400b9c755883e7fae14557f6 (diff)
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'minrisk/minrisk_optimize.cc')
-rw-r--r--minrisk/minrisk_optimize.cc141
1 files changed, 141 insertions, 0 deletions
diff --git a/minrisk/minrisk_optimize.cc b/minrisk/minrisk_optimize.cc
new file mode 100644
index 00000000..5096acc1
--- /dev/null
+++ b/minrisk/minrisk_optimize.cc
@@ -0,0 +1,141 @@
+#include <sstream>
+#include <iostream>
+#include <vector>
+#include <limits>
+
+#include <boost/program_options.hpp>
+#include <boost/program_options/variables_map.hpp>
+
+#include "liblbfgs/lbfgs++.h"
+#include "filelib.h"
+#include "stringlib.h"
+#include "weights.h"
+#include "hg_io.h"
+#include "kbest.h"
+#include "viterbi.h"
+#include "ns.h"
+#include "ns_docscorer.h"
+#include "candidate_set.h"
+#include "risk.h"
+
+using namespace std;
+namespace po = boost::program_options;
+
+void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
+ po::options_description opts("Configuration options");
+ opts.add_options()
+ ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)")
+ ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations")
+ ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)")
+ ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)")
+ ("kbest_repository,R",po::value<string>(), "Accumulate k-best lists from previous iterations (parameter is path to repository)")
+ ("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract")
+ ("help,h", "Help");
+ po::options_description dcmdline_options;
+ dcmdline_options.add(opts);
+ po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
+ bool flag = false;
+ if (!conf->count("reference")) {
+ cerr << "Please specify one or more references using -r <REF.TXT>\n";
+ flag = true;
+ }
+ if (!conf->count("weights")) {
+ cerr << "Please specify weights using -w <WEIGHTS.TXT>\n";
+ flag = true;
+ }
+ if (flag || conf->count("help")) {
+ cerr << dcmdline_options << endl;
+ exit(1);
+ }
+}
+
+EvaluationMetric* metric = NULL;
+
+struct RiskObjective {
+ explicit RiskObjective(const vector<training::CandidateSet>& tr) : training(tr) {}
+ double operator()(const vector<double>& x, double* g) const {
+ fill(g, g + x.size(), 0.0);
+ double obj = 0;
+ for (unsigned i = 0; i < training.size(); ++i) {
+ training::CandidateSetRisk risk(training[i], *metric);
+ SparseVector<double> tg;
+ double r = risk(x, &tg);
+ obj += r;
+ for (SparseVector<double>::iterator it = tg.begin(); it != tg.end(); ++it)
+ g[it->first] += it->second;
+ }
+ cerr << (1-(obj / training.size())) << endl;
+ return obj;
+ }
+ const vector<training::CandidateSet>& training;
+};
+
+double LearnParameters(const vector<training::CandidateSet>& training,
+ const double C1,
+ const unsigned memory_buffers,
+ vector<weight_t>* px) {
+ RiskObjective obj(training);
+ LBFGS<RiskObjective> lbfgs(px, obj, memory_buffers, C1);
+ lbfgs.MinimizeFunction();
+ return 0;
+}
+
+// runs lines 4--15 of rampion algorithm
+int main(int argc, char** argv) {
+ po::variables_map conf;
+ InitCommandLine(argc, argv, &conf);
+ const string evaluation_metric = conf["evaluation_metric"].as<string>();
+
+ metric = EvaluationMetric::Instance(evaluation_metric);
+ DocumentScorer ds(metric, conf["reference"].as<vector<string> >());
+ cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl;
+ double goodsign = -1;
+ double badsign = -goodsign;
+
+ Hypergraph hg;
+ string last_file;
+ ReadFile in_read(conf["input"].as<string>());
+ string kbest_repo;
+ if (conf.count("kbest_repository")) {
+ kbest_repo = conf["kbest_repository"].as<string>();
+ MkDirP(kbest_repo);
+ }
+ istream &in=*in_read.stream();
+ const unsigned kbest_size = conf["kbest_size"].as<unsigned>();
+ vector<weight_t> weights;
+ const string weightsf = conf["weights"].as<string>();
+ Weights::InitFromFile(weightsf, &weights);
+ string line, file;
+ vector<training::CandidateSet> kis;
+ cerr << "Loading hypergraphs...\n";
+ while(getline(in, line)) {
+ istringstream is(line);
+ int sent_id;
+ kis.resize(kis.size() + 1);
+ training::CandidateSet& curkbest = kis.back();
+ string kbest_file;
+ if (kbest_repo.size()) {
+ ostringstream os;
+ os << kbest_repo << "/kbest." << sent_id << ".txt.gz";
+ kbest_file = os.str();
+ if (FileExists(kbest_file))
+ curkbest.ReadFromFile(kbest_file);
+ }
+ is >> file >> sent_id;
+ ReadFile rf(file);
+ if (kis.size() % 5 == 0) { cerr << '.'; }
+ if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; }
+ HypergraphIO::ReadFromJSON(rf.stream(), &hg);
+ hg.Reweight(weights);
+ curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]);
+ if (kbest_file.size())
+ curkbest.WriteToFile(kbest_file);
+ }
+ cerr << "\nHypergraphs loaded.\n";
+ weights.resize(FD::NumFeats());
+
+ LearnParameters(kis, 0.0, 100, &weights);
+ Weights::WriteToFile("-", weights);
+ return 0;
+}
+