diff options
author | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-06-26 14:47:46 +0200 |
---|---|---|
committer | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-06-26 14:47:46 +0200 |
commit | 3c03e716a8638163a820dbecf652c772e6d651f2 (patch) | |
tree | 255e2aa075b9a4c2a2fb1c077e899afdc5654c19 /minrisk/minrisk_optimize.cc | |
parent | d04c516536db996e5fe5b94b8e5dea4ce2e04b4a (diff) | |
parent | e1b85b4f02045c62400b9c755883e7fae14557f6 (diff) |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'minrisk/minrisk_optimize.cc')
-rw-r--r-- | minrisk/minrisk_optimize.cc | 141 |
1 files changed, 141 insertions, 0 deletions
diff --git a/minrisk/minrisk_optimize.cc b/minrisk/minrisk_optimize.cc new file mode 100644 index 00000000..5096acc1 --- /dev/null +++ b/minrisk/minrisk_optimize.cc @@ -0,0 +1,141 @@ +#include <sstream> +#include <iostream> +#include <vector> +#include <limits> + +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "liblbfgs/lbfgs++.h" +#include "filelib.h" +#include "stringlib.h" +#include "weights.h" +#include "hg_io.h" +#include "kbest.h" +#include "viterbi.h" +#include "ns.h" +#include "ns_docscorer.h" +#include "candidate_set.h" +#include "risk.h" + +using namespace std; +namespace po = boost::program_options; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { + po::options_description opts("Configuration options"); + opts.add_options() + ("reference,r",po::value<vector<string> >(), "[REQD] Reference translation (tokenized text)") + ("weights,w",po::value<string>(), "[REQD] Weights files from current iterations") + ("input,i",po::value<string>()->default_value("-"), "Input file to map (- is STDIN)") + ("evaluation_metric,m",po::value<string>()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") + ("kbest_repository,R",po::value<string>(), "Accumulate k-best lists from previous iterations (parameter is path to repository)") + ("kbest_size,k",po::value<unsigned>()->default_value(500u), "Top k-hypotheses to extract") + ("help,h", "Help"); + po::options_description dcmdline_options; + dcmdline_options.add(opts); + po::store(parse_command_line(argc, argv, dcmdline_options), *conf); + bool flag = false; + if (!conf->count("reference")) { + cerr << "Please specify one or more references using -r <REF.TXT>\n"; + flag = true; + } + if (!conf->count("weights")) { + cerr << "Please specify weights using -w <WEIGHTS.TXT>\n"; + flag = true; + } + if (flag || conf->count("help")) { + cerr << dcmdline_options << endl; + exit(1); + } +} + +EvaluationMetric* metric = NULL; + +struct RiskObjective { + explicit RiskObjective(const vector<training::CandidateSet>& tr) : training(tr) {} + double operator()(const vector<double>& x, double* g) const { + fill(g, g + x.size(), 0.0); + double obj = 0; + for (unsigned i = 0; i < training.size(); ++i) { + training::CandidateSetRisk risk(training[i], *metric); + SparseVector<double> tg; + double r = risk(x, &tg); + obj += r; + for (SparseVector<double>::iterator it = tg.begin(); it != tg.end(); ++it) + g[it->first] += it->second; + } + cerr << (1-(obj / training.size())) << endl; + return obj; + } + const vector<training::CandidateSet>& training; +}; + +double LearnParameters(const vector<training::CandidateSet>& training, + const double C1, + const unsigned memory_buffers, + vector<weight_t>* px) { + RiskObjective obj(training); + LBFGS<RiskObjective> lbfgs(px, obj, memory_buffers, C1); + lbfgs.MinimizeFunction(); + return 0; +} + +// runs lines 4--15 of rampion algorithm +int main(int argc, char** argv) { + po::variables_map conf; + InitCommandLine(argc, argv, &conf); + const string evaluation_metric = conf["evaluation_metric"].as<string>(); + + metric = EvaluationMetric::Instance(evaluation_metric); + DocumentScorer ds(metric, conf["reference"].as<vector<string> >()); + cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; + double goodsign = -1; + double badsign = -goodsign; + + Hypergraph hg; + string last_file; + ReadFile in_read(conf["input"].as<string>()); + string kbest_repo; + if (conf.count("kbest_repository")) { + kbest_repo = conf["kbest_repository"].as<string>(); + MkDirP(kbest_repo); + } + istream &in=*in_read.stream(); + const unsigned kbest_size = conf["kbest_size"].as<unsigned>(); + vector<weight_t> weights; + const string weightsf = conf["weights"].as<string>(); + Weights::InitFromFile(weightsf, &weights); + string line, file; + vector<training::CandidateSet> kis; + cerr << "Loading hypergraphs...\n"; + while(getline(in, line)) { + istringstream is(line); + int sent_id; + kis.resize(kis.size() + 1); + training::CandidateSet& curkbest = kis.back(); + string kbest_file; + if (kbest_repo.size()) { + ostringstream os; + os << kbest_repo << "/kbest." << sent_id << ".txt.gz"; + kbest_file = os.str(); + if (FileExists(kbest_file)) + curkbest.ReadFromFile(kbest_file); + } + is >> file >> sent_id; + ReadFile rf(file); + if (kis.size() % 5 == 0) { cerr << '.'; } + if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; } + HypergraphIO::ReadFromJSON(rf.stream(), &hg); + hg.Reweight(weights); + curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]); + if (kbest_file.size()) + curkbest.WriteToFile(kbest_file); + } + cerr << "\nHypergraphs loaded.\n"; + weights.resize(FD::NumFeats()); + + LearnParameters(kis, 0.0, 100, &weights); + Weights::WriteToFile("-", weights); + return 0; +} + |