summaryrefslogtreecommitdiff
path: root/gi
diff options
context:
space:
mode:
authorphilblunsom <philblunsom@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-07-15 03:39:32 +0000
committerphilblunsom <philblunsom@ec762483-ff6d-05da-a07a-a48fb63a330f>2010-07-15 03:39:32 +0000
commitc0eee37401d3731555346cb260330049b5dc99e7 (patch)
treea34bcd2309c23ca4d02ab3938f888a349aad12b2 /gi
parenta5b1162c68d6ff5bc52b646efb563a0077cd1d2a (diff)
working on the mpi version
git-svn-id: https://ws10smt.googlecode.com/svn/trunk@257 ec762483-ff6d-05da-a07a-a48fb63a330f
Diffstat (limited to 'gi')
-rw-r--r--gi/pyp-topics/src/Makefile.am6
-rw-r--r--gi/pyp-topics/src/Makefile.mpi25
-rw-r--r--gi/pyp-topics/src/macros.Linux20
-rw-r--r--gi/pyp-topics/src/mpi-pyp-topics.cc122
-rw-r--r--gi/pyp-topics/src/mpi-pyp-topics.hh32
-rw-r--r--gi/pyp-topics/src/mpi-pyp.hh4
-rw-r--r--gi/pyp-topics/src/mpi-train-contexts.cc105
7 files changed, 166 insertions, 148 deletions
diff --git a/gi/pyp-topics/src/Makefile.am b/gi/pyp-topics/src/Makefile.am
index a3a30acd..c22819db 100644
--- a/gi/pyp-topics/src/Makefile.am
+++ b/gi/pyp-topics/src/Makefile.am
@@ -1,4 +1,4 @@
-bin_PROGRAMS = pyp-topics-train pyp-contexts-train mpi-pyp-contexts-train
+bin_PROGRAMS = pyp-topics-train pyp-contexts-train #mpi-pyp-contexts-train
contexts_lexer.cc: contexts_lexer.l
$(LEX) -s -CF -8 -o$@ $<
@@ -9,8 +9,8 @@ pyp_topics_train_LDADD = $(top_srcdir)/decoder/libcdec.a -lz
pyp_contexts_train_SOURCES = mt19937ar.c corpus.cc gzstream.cc pyp-topics.cc contexts_lexer.cc contexts_corpus.cc train-contexts.cc
pyp_contexts_train_LDADD = $(top_srcdir)/decoder/libcdec.a -lz
-mpi_pyp_contexts_train_SOURCES = mt19937ar.c corpus.cc gzstream.cc mpi-pyp-topics.cc contexts_lexer.cc contexts_corpus.cc mpi-train-contexts.cc
-mpi_pyp_contexts_train_LDADD = $(top_srcdir)/decoder/libcdec.a -lz
+#mpi_pyp_contexts_train_SOURCES = mt19937ar.c corpus.cc gzstream.cc mpi-pyp-topics.cc contexts_lexer.cc contexts_corpus.cc mpi-train-contexts.cc
+#mpi_pyp_contexts_train_LDADD = $(top_srcdir)/decoder/libcdec.a -lz
AM_CPPFLAGS = -W -Wall -Wno-sign-compare -funroll-loops
diff --git a/gi/pyp-topics/src/Makefile.mpi b/gi/pyp-topics/src/Makefile.mpi
new file mode 100644
index 00000000..b22cc7e7
--- /dev/null
+++ b/gi/pyp-topics/src/Makefile.mpi
@@ -0,0 +1,25 @@
+BLD_ARCH=$(shell uname -s)
+-include macros.${BLD_ARCH}
+
+local_objs = mt19937ar.o corpus.o gzstream.o mpi-pyp-topics.o contexts_lexer.o contexts_corpus.o mpi-train-contexts.o
+
+all: mpi-pyp-contexts-train
+
+-include makefile.depend
+
+#-----------------------#
+# Local stuff
+#-----------------------#
+
+mpi-pyp-contexts-train: mpi-train-contexts.o $(local_objs)
+ $(CXX) -o $@ $^ $(LDFLAGS)
+
+.PHONY: depend echo
+depend:
+ $(CXX) -MM $(CXXFLAGS) *.cc *.c | sed 's/^\(.*\.o:\)/obj\/\1/' > makefile.depend
+
+clean:
+ rm -f obj/*.o
+
+#clobber: clean
+# rm makefile.depend ../bin/${ARCH}/*
diff --git a/gi/pyp-topics/src/macros.Linux b/gi/pyp-topics/src/macros.Linux
new file mode 100644
index 00000000..ade6d92d
--- /dev/null
+++ b/gi/pyp-topics/src/macros.Linux
@@ -0,0 +1,20 @@
+#CC=gcc-4.1
+#CXX=g++-4.1
+#LD=g++-4.1
+#FC=gfortran-4.1
+CC = mpicc
+CXX = mpicxx
+LD = mpicxx
+FC = mpif77
+
+CXXFLAGS = -Wall -I/home/pblunsom/packages/include
+CFLAGS = -Wall -I/home/pblunsom/packages/include
+FFLAGS = -Wall
+LDFLAGS = -lm -lz -L/home/pblunsom/packages/lib \
+ -lboost_program_options -lboost_mpi -lboost_serialization \
+ -lboost_regex -L../../../decoder -lcdec
+
+FFLAGS += -g -O6 -march=native
+CFLAGS += -g -O6 -march=native
+CXXFLAGS += -g -O6 -march=native
+LDFLAGS += -g -O6 -march=native
diff --git a/gi/pyp-topics/src/mpi-pyp-topics.cc b/gi/pyp-topics/src/mpi-pyp-topics.cc
index d2daad4f..2ad28278 100644
--- a/gi/pyp-topics/src/mpi-pyp-topics.cc
+++ b/gi/pyp-topics/src/mpi-pyp-topics.cc
@@ -1,3 +1,5 @@
+#include <boost/mpi/communicator.hpp>
+
#include "timing.h"
#include "mpi-pyp-topics.hh"
@@ -6,37 +8,51 @@ void PYPTopics::sample_corpus(const Corpus& corpus, int samples,
int freq_cutoff_start, int freq_cutoff_end,
int freq_cutoff_interval,
int max_contexts_per_document) {
+ std::cout << "I am process " << m_rank << " of " << m_size << "." << std::endl;
Timer timer;
+ std::cout << m_am_root << std::endl;
+
+ int documents = corpus.num_documents();
+ m_mpi_start = 0;
+ m_mpi_end = documents;
+ if (m_size != 1) {
+ assert(documents < std::numeric_limits<int>::max());
+ m_mpi_start = (documents / m_size) * m_rank;
+ if (m_rank == m_size-1) m_mpi_end = documents;
+ else m_mpi_end = (documents / m_size)*(m_rank+1);
+ }
+ int local_documents = m_mpi_end - m_mpi_start;
+
if (!m_backoff.get()) {
m_word_pyps.clear();
m_word_pyps.push_back(PYPs());
}
- std::cerr << "\n Training with " << m_word_pyps.size()-1 << " backoff level"
+ if (m_am_root) std::cerr << "\n Training with " << m_word_pyps.size()-1 << " backoff level"
<< (m_word_pyps.size()==2 ? ":" : "s:") << std::endl;
for (int i=0; i<(int)m_word_pyps.size(); ++i)
{
m_word_pyps.at(i).reserve(m_num_topics);
for (int j=0; j<m_num_topics; ++j)
- m_word_pyps.at(i).push_back(new PYP<int>(0.5, 1.0, m_seed));
+ m_word_pyps.at(i).push_back(new PYP<int>(0.5, 1.0));
}
- std::cerr << std::endl;
+ if (m_am_root) std::cerr << std::endl;
m_document_pyps.reserve(corpus.num_documents());
for (int j=0; j<corpus.num_documents(); ++j)
- m_document_pyps.push_back(new PYP<int>(0.5, 1.0, m_seed));
+ m_document_pyps.push_back(new PYP<int>(0.5, 1.0));
m_topic_p0 = 1.0/m_num_topics;
m_term_p0 = 1.0/corpus.num_types();
m_backoff_p0 = 1.0/corpus.num_documents();
- std::cerr << " Documents: " << corpus.num_documents() << " Terms: "
+ if (m_am_root) std::cerr << " Documents: " << corpus.num_documents() << " Terms: "
<< corpus.num_types() << std::endl;
int frequency_cutoff = freq_cutoff_start;
- std::cerr << " Context frequency cutoff set to " << frequency_cutoff << std::endl;
+ if (m_am_root) std::cerr << " Context frequency cutoff set to " << frequency_cutoff << std::endl;
timer.Reset();
// Initialisation pass
@@ -74,11 +90,11 @@ void PYPTopics::sample_corpus(const Corpus& corpus, int samples,
m_corpus_topics[document_id][term_index] = new_topic;
}
}
- std::cerr << " Initialized in " << timer.Elapsed() << " seconds\n";
+ if (m_am_root) std::cerr << " Initialized in " << timer.Elapsed() << " seconds\n";
- int* randomDocIndices = new int[corpus.num_documents()];
- for (int i = 0; i < corpus.num_documents(); ++i)
- randomDocIndices[i] = i;
+ int* randomDocIndices = new int[local_documents];
+ for (int i = 0; i < local_documents; ++i)
+ randomDocIndices[i] = i+m_mpi_start;
// Sampling phase
for (int curr_sample=0; curr_sample < samples; ++curr_sample) {
@@ -86,16 +102,15 @@ void PYPTopics::sample_corpus(const Corpus& corpus, int samples,
&& curr_sample % freq_cutoff_interval == 1
&& frequency_cutoff > freq_cutoff_end) {
frequency_cutoff--;
- std::cerr << "\n Context frequency cutoff set to " << frequency_cutoff << std::endl;
+ if (m_am_root) std::cerr << "\n Context frequency cutoff set to " << frequency_cutoff << std::endl;
}
- std::cerr << "\n -- Sample " << curr_sample << " "; std::cerr.flush();
+ if (m_am_root) std::cerr << "\n -- Sample " << curr_sample << " "; std::cerr.flush();
// Randomize the corpus indexing array
int tmp;
int processed_terms=0;
- for (int i = corpus.num_documents()-1; i > 0; --i)
- {
+ for (int i = local_documents-1; i > 0; --i) {
//i+1 since j \in [0,i] but rnd() \in [0,1)
int j = (int)(rnd() * (i+1));
assert(j >= 0 && j <= i);
@@ -106,7 +121,7 @@ void PYPTopics::sample_corpus(const Corpus& corpus, int samples,
// for each document in the corpus
int document_id;
- for (int i=0; i<corpus.num_documents(); ++i) {
+ for (int i=0; i<local_documents; ++i) {
document_id = randomDocIndices[i];
// for each term in the document
@@ -151,15 +166,16 @@ void PYPTopics::sample_corpus(const Corpus& corpus, int samples,
else m_document_pyps[document_id].increment(new_topic, m_topic_p0);
}
if (document_id && document_id % 10000 == 0) {
- std::cerr << "."; std::cerr.flush();
+ if (m_am_root) std::cerr << "."; std::cerr.flush();
}
}
- std::cerr << " ||| sampled " << processed_terms << " terms.";
+ m_world.barrier();
+ if (m_am_root) std::cerr << " ||| sampled " << processed_terms << " terms.";
if (curr_sample != 0 && curr_sample % 10 == 0) {
- std::cerr << " ||| time=" << (timer.Elapsed() / 10.0) << " sec/sample" << std::endl;
+ if (m_am_root) std::cerr << " ||| time=" << (timer.Elapsed() / 10.0) << " sec/sample" << std::endl;
timer.Reset();
- std::cerr << " ... Resampling hyperparameters (" << max_threads << " threads)"; std::cerr.flush();
+ if (m_am_root) std::cerr << " ... Resampling hyperparameters"; std::cerr.flush();
// resample the hyperparamters
F log_p=0.0;
@@ -172,21 +188,10 @@ void PYPTopics::sample_corpus(const Corpus& corpus, int samples,
}
}
- WorkerPtrVect workers;
- for (int i = 0; i < max_threads; ++i)
- {
- JobReturnsF job = boost::bind(&PYPTopics::hresample_docs, this, max_threads, i);
- workers.push_back(new SimpleResampleWorker(job));
- }
-
- WorkerPtrVect::iterator workerIt;
- for (workerIt = workers.begin(); workerIt != workers.end(); ++workerIt)
- {
- //std::cerr << "Retrieving worker result.."; std::cerr.flush();
- F wresult = workerIt->getResult(); //blocks until worker done
- log_p += wresult;
- //std::cerr << ".. got " << wresult << std::endl; std::cerr.flush();
-
+ for (PYPs::iterator pypIt=m_document_pyps.begin();
+ pypIt != m_document_pyps.end(); ++pypIt) {
+ pypIt->resample_prior();
+ log_p += pypIt->log_restaurant_prob();
}
if (m_use_topic_pyp) {
@@ -195,64 +200,25 @@ void PYPTopics::sample_corpus(const Corpus& corpus, int samples,
}
std::cerr.precision(10);
- std::cerr << " ||| LLH=" << log_p << " ||| resampling time=" << timer.Elapsed() << " sec" << std::endl;
+ if (m_am_root) std::cerr << " ||| LLH=" << log_p << " ||| resampling time=" << timer.Elapsed() << " sec" << std::endl;
timer.Reset();
int k=0;
- std::cerr << "Topics distribution: ";
+ if (m_am_root) std::cerr << "Topics distribution: ";
std::cerr.precision(2);
for (PYPs::iterator pypIt=m_word_pyps.front().begin();
pypIt != m_word_pyps.front().end(); ++pypIt, ++k) {
- if (k % 5 == 0) std::cerr << std::endl << '\t';
- std::cerr << "<" << k << ":" << pypIt->num_customers() << ","
+ if (m_am_root && k % 5 == 0) std::cerr << std::endl << '\t';
+ if (m_am_root) std::cerr << "<" << k << ":" << pypIt->num_customers() << ","
<< pypIt->num_types() << "," << m_topic_pyp.prob(k, m_topic_p0) << "> ";
}
std::cerr.precision(4);
- std::cerr << std::endl;
+ if (m_am_root) std::cerr << std::endl;
}
}
delete [] randomDocIndices;
}
-PYPTopics::F PYPTopics::hresample_docs(int num_threads, int thread_id)
-{
- int resample_counter=0;
- F log_p = 0.0;
- PYPs::iterator pypIt = m_document_pyps.begin();
- PYPs::iterator end = m_document_pyps.end();
- pypIt += thread_id;
-// std::cerr << thread_id << " started " << std::endl; std::cerr.flush();
-
- while (pypIt < end)
- {
- pypIt->resample_prior();
- log_p += pypIt->log_restaurant_prob();
- if (resample_counter++ % 5000 == 0) {
- std::cerr << "."; std::cerr.flush();
- }
- pypIt += num_threads;
- }
-// std::cerr << thread_id << " did " << resample_counter << " with answer " << log_p << std::endl; std::cerr.flush();
-
- return log_p;
-}
-
-//PYPTopics::F PYPTopics::hresample_topics()
-//{
-// F log_p = 0.0;
-// for (std::vector<PYPs>::iterator levelIt=m_word_pyps.begin();
-// levelIt != m_word_pyps.end(); ++levelIt) {
-// for (PYPs::iterator pypIt=levelIt->begin();
-// pypIt != levelIt->end(); ++pypIt) {
-//
-// pypIt->resample_prior();
-// log_p += pypIt->log_restaurant_prob();
-// }
-// }
-// //std::cerr << "topicworker has answer " << log_p << std::endl; std::cerr.flush();
-//
-// return log_p;
-//}
void PYPTopics::decrement(const Term& term, int topic, int level) {
//std::cerr << "PYPTopics::decrement(" << term << "," << topic << "," << level << ")" << std::endl;
diff --git a/gi/pyp-topics/src/mpi-pyp-topics.hh b/gi/pyp-topics/src/mpi-pyp-topics.hh
index d978c7a1..5da35d82 100644
--- a/gi/pyp-topics/src/mpi-pyp-topics.hh
+++ b/gi/pyp-topics/src/mpi-pyp-topics.hh
@@ -3,15 +3,16 @@
#include <vector>
#include <iostream>
-#include <boost/ptr_container/ptr_vector.hpp>
+#include <boost/ptr_container/ptr_vector.hpp>
#include <boost/random/uniform_real.hpp>
#include <boost/random/variate_generator.hpp>
#include <boost/random/mersenne_twister.hpp>
+#include <boost/mpi/environment.hpp>
+#include <boost/mpi/communicator.hpp>
#include "mpi-pyp.hh"
#include "corpus.hh"
-#include "workers.hh"
class PYPTopics {
public:
@@ -20,13 +21,17 @@ public:
typedef double F;
public:
- PYPTopics(int num_topics, bool use_topic_pyp=false, unsigned long seed = 0,
- int max_threads = 1)
+ PYPTopics(int num_topics, bool use_topic_pyp=false, unsigned long seed = 0)
: m_num_topics(num_topics), m_word_pyps(1),
- m_topic_pyp(0.5,1.0,seed), m_use_topic_pyp(use_topic_pyp),
+ m_topic_pyp(0.5,1.0), m_use_topic_pyp(use_topic_pyp),
m_seed(seed),
uni_dist(0,1), rng(seed == 0 ? (unsigned long)this : seed),
- rnd(rng, uni_dist), max_threads(max_threads) {}
+ rnd(rng, uni_dist), m_mpi_start(-1), m_mpi_end(-1) {
+ boost::mpi::communicator m_world;
+ m_rank = m_world.rank();
+ m_size = m_world.size();
+ m_am_root = (m_rank == 0);
+ }
void sample_corpus(const Corpus& corpus, int samples,
int freq_cutoff_start=0, int freq_cutoff_end=0,
@@ -81,17 +86,12 @@ private:
gen_type rnd; //instantiate: rnd(rng, uni_dist)
//call: rnd() generates uniform on [0,1)
- typedef boost::function<F()> JobReturnsF;
- typedef SimpleWorker<JobReturnsF, F> SimpleResampleWorker;
- typedef boost::ptr_vector<SimpleResampleWorker> WorkerPtrVect;
-
- F hresample_docs(int num_threads, int thread_id);
-
-// F hresample_topics();
-
- int max_threads;
-
TermBackoffPtr m_backoff;
+
+ boost::mpi::communicator m_world;
+ bool m_am_root;
+ int m_rank, m_size;
+ int m_mpi_start, m_mpi_end;
};
#endif // PYP_TOPICS_HH
diff --git a/gi/pyp-topics/src/mpi-pyp.hh b/gi/pyp-topics/src/mpi-pyp.hh
index dc47244b..3396f92b 100644
--- a/gi/pyp-topics/src/mpi-pyp.hh
+++ b/gi/pyp-topics/src/mpi-pyp.hh
@@ -32,7 +32,7 @@ public:
// using google::sparse_hash_map<Dish,int>::begin;
// using google::sparse_hash_map<Dish,int>::end;
- PYP(double a, double b, unsigned long seed = 0, Hash hash=Hash());
+ PYP(double a, double b, Hash hash=Hash());
int increment(Dish d, double p0);
int decrement(Dish d);
@@ -153,7 +153,7 @@ private:
};
template <typename Dish, typename Hash>
-PYP<Dish,Hash>::PYP(double a, double b, unsigned long seed, Hash)
+PYP<Dish,Hash>::PYP(double a, double b, Hash)
: std::tr1::unordered_map<Dish, int, Hash>(10), _a(a), _b(b),
//: google::sparse_hash_map<Dish, int, Hash>(10), _a(a), _b(b),
_a_beta_a(1), _a_beta_b(1), _b_gamma_s(1), _b_gamma_c(1),
diff --git a/gi/pyp-topics/src/mpi-train-contexts.cc b/gi/pyp-topics/src/mpi-train-contexts.cc
index 6309fe93..956ce123 100644
--- a/gi/pyp-topics/src/mpi-train-contexts.cc
+++ b/gi/pyp-topics/src/mpi-train-contexts.cc
@@ -8,6 +8,8 @@
#include <boost/program_options/parsers.hpp>
#include <boost/program_options/variables_map.hpp>
#include <boost/scoped_ptr.hpp>
+#include <boost/mpi/environment.hpp>
+#include <boost/mpi/communicator.hpp>
// Local
#include "mpi-pyp-topics.hh"
@@ -24,8 +26,12 @@ using namespace std;
int main(int argc, char **argv)
{
- cout << "Pitman Yor topic models: Copyright 2010 Phil Blunsom\n";
- cout << REVISION << '\n' <<endl;
+ mpi::environment env(argc, argv);
+ mpi::communicator world;
+ bool am_root = (world.rank() == 0);
+ if (am_root) std::cout << "I am process " << world.rank() << " of " << world.size() << "." << std::endl;
+ if (am_root) cout << "Pitman Yor topic models: Copyright 2010 Phil Blunsom\n";
+ if (am_root) cout << REVISION << '\n' <<endl;
////////////////////////////////////////////////////////////////////////////////////////////
// Command line processing
@@ -53,7 +59,6 @@ int main(int argc, char **argv)
("freq-cutoff-start", value<int>()->default_value(0), "initial frequency cutoff.")
("freq-cutoff-end", value<int>()->default_value(0), "final frequency cutoff.")
("freq-cutoff-interval", value<int>()->default_value(0), "number of iterations between frequency decrement.")
- ("max-threads", value<int>()->default_value(1), "maximum number of simultaneous threads allowed")
("max-contexts-per-document", value<int>()->default_value(0), "Only sample the n most frequent contexts for a document.")
;
@@ -81,7 +86,7 @@ int main(int argc, char **argv)
// seed the random number generator: 0 = automatic, specify value otherwise
unsigned long seed = 0;
- PYPTopics model(vm["topics"].as<int>(), vm.count("hierarchical-topics"), seed, vm["max-threads"].as<int>());
+ PYPTopics model(vm["topics"].as<int>(), vm.count("hierarchical-topics"), seed);
// read the data
BackoffGenerator* backoff_gen=0;
@@ -112,58 +117,60 @@ int main(int argc, char **argv)
vm["freq-cutoff-interval"].as<int>(),
vm["max-contexts-per-document"].as<int>());
- if (vm.count("document-topics-out")) {
- ogzstream documents_out(vm["document-topics-out"].as<string>().c_str());
-
- int document_id=0;
- map<int,int> all_terms;
- for (Corpus::const_iterator corpusIt=contexts_corpus.begin();
- corpusIt != contexts_corpus.end(); ++corpusIt, ++document_id) {
- vector<int> unique_terms;
- for (Document::const_iterator docIt=corpusIt->begin();
- docIt != corpusIt->end(); ++docIt) {
- if (unique_terms.empty() || *docIt != unique_terms.back())
- unique_terms.push_back(*docIt);
- // increment this terms frequency
- pair<map<int,int>::iterator,bool> insert_result = all_terms.insert(make_pair(*docIt,1));
- if (!insert_result.second)
- all_terms[*docIt] = all_terms[*docIt] + 1;
+ if (world.rank() == 0) {
+ if (vm.count("document-topics-out")) {
+ ogzstream documents_out(vm["document-topics-out"].as<string>().c_str());
+
+ int document_id=0;
+ map<int,int> all_terms;
+ for (Corpus::const_iterator corpusIt=contexts_corpus.begin();
+ corpusIt != contexts_corpus.end(); ++corpusIt, ++document_id) {
+ vector<int> unique_terms;
+ for (Document::const_iterator docIt=corpusIt->begin();
+ docIt != corpusIt->end(); ++docIt) {
+ if (unique_terms.empty() || *docIt != unique_terms.back())
+ unique_terms.push_back(*docIt);
+ // increment this terms frequency
+ pair<map<int,int>::iterator,bool> insert_result = all_terms.insert(make_pair(*docIt,1));
+ if (!insert_result.second)
+ all_terms[*docIt] = all_terms[*docIt] + 1;
//insert_result.first++;
+ }
+ documents_out << contexts_corpus.key(document_id) << '\t';
+ documents_out << model.max(document_id) << " " << corpusIt->size() << " ||| ";
+ for (std::vector<int>::const_iterator termIt=unique_terms.begin();
+ termIt != unique_terms.end(); ++termIt) {
+ if (termIt != unique_terms.begin())
+ documents_out << " ||| ";
+ vector<std::string> strings = contexts_corpus.context2string(*termIt);
+ copy(strings.begin(), strings.end(),ostream_iterator<std::string>(documents_out, " "));
+ documents_out << "||| C=" << model.max(document_id, *termIt);
+
+ }
+ documents_out <<endl;
}
- documents_out << contexts_corpus.key(document_id) << '\t';
- documents_out << model.max(document_id) << " " << corpusIt->size() << " ||| ";
- for (std::vector<int>::const_iterator termIt=unique_terms.begin();
- termIt != unique_terms.end(); ++termIt) {
- if (termIt != unique_terms.begin())
- documents_out << " ||| ";
- vector<std::string> strings = contexts_corpus.context2string(*termIt);
- copy(strings.begin(), strings.end(),ostream_iterator<std::string>(documents_out, " "));
- documents_out << "||| C=" << model.max(document_id, *termIt);
-
+ documents_out.close();
+
+ if (vm.count("default-topics-out")) {
+ ofstream default_topics(vm["default-topics-out"].as<string>().c_str());
+ default_topics << model.max_topic() <<endl;
+ for (std::map<int,int>::const_iterator termIt=all_terms.begin(); termIt != all_terms.end(); ++termIt) {
+ vector<std::string> strings = contexts_corpus.context2string(termIt->first);
+ default_topics << model.max(-1, termIt->first) << " ||| " << termIt->second << " ||| ";
+ copy(strings.begin(), strings.end(),ostream_iterator<std::string>(default_topics, " "));
+ default_topics <<endl;
+ }
}
- documents_out <<endl;
}
- documents_out.close();
-
- if (vm.count("default-topics-out")) {
- ofstream default_topics(vm["default-topics-out"].as<string>().c_str());
- default_topics << model.max_topic() <<endl;
- for (std::map<int,int>::const_iterator termIt=all_terms.begin(); termIt != all_terms.end(); ++termIt) {
- vector<std::string> strings = contexts_corpus.context2string(termIt->first);
- default_topics << model.max(-1, termIt->first) << " ||| " << termIt->second << " ||| ";
- copy(strings.begin(), strings.end(),ostream_iterator<std::string>(default_topics, " "));
- default_topics <<endl;
- }
+
+ if (vm.count("topic-words-out")) {
+ ogzstream topics_out(vm["topic-words-out"].as<string>().c_str());
+ model.print_topic_terms(topics_out);
+ topics_out.close();
}
- }
- if (vm.count("topic-words-out")) {
- ogzstream topics_out(vm["topic-words-out"].as<string>().c_str());
- model.print_topic_terms(topics_out);
- topics_out.close();
+ cout <<endl;
}
- cout <<endl;
-
return 0;
}