diff options
author | Kenneth Heafield <github@kheafield.com> | 2012-10-22 12:07:20 +0100 |
---|---|---|
committer | Kenneth Heafield <github@kheafield.com> | 2012-10-22 12:07:20 +0100 |
commit | 5f98fe5c4f2a2090eeb9d30c030305a70a8347d1 (patch) | |
tree | 9b6002f850e6dea1e3400c6b19bb31a9cdf3067f /gi/pyp-topics/src/pyp-topics.cc | |
parent | cf9994131993b40be62e90e213b1e11e6b550143 (diff) | |
parent | 21825a09d97c2e0afd20512f306fb25fed55e529 (diff) |
Merge remote branch 'upstream/master'
Conflicts:
Jamroot
bjam
decoder/Jamfile
decoder/cdec.cc
dpmert/Jamfile
jam-files/sanity.jam
klm/lm/Jamfile
klm/util/Jamfile
mira/Jamfile
Diffstat (limited to 'gi/pyp-topics/src/pyp-topics.cc')
-rw-r--r-- | gi/pyp-topics/src/pyp-topics.cc | 499 |
1 files changed, 0 insertions, 499 deletions
diff --git a/gi/pyp-topics/src/pyp-topics.cc b/gi/pyp-topics/src/pyp-topics.cc deleted file mode 100644 index 4de52fd7..00000000 --- a/gi/pyp-topics/src/pyp-topics.cc +++ /dev/null @@ -1,499 +0,0 @@ -#include "timing.h" -#include "pyp-topics.hh" -#include "contexts_corpus.hh" - -//Dict const *dict; - -//#include <boost/date_time/posix_time/posix_time_types.hpp> -void PYPTopics::sample_corpus(const Corpus& corpus, int samples, - int freq_cutoff_start, int freq_cutoff_end, - int freq_cutoff_interval, - int max_contexts_per_document, - F temp_start, F temp_end) { - Timer timer; - //dict = &((ContextsCorpus*) &corpus)->dict(); - - if (!m_backoff.get()) { - m_word_pyps.clear(); - m_word_pyps.push_back(PYPs()); - } - - std::cerr << "\n Training with " << m_word_pyps.size()-1 << " backoff level" - << (m_word_pyps.size()==2 ? ":" : "s:") << std::endl; - - - for (int i=0; i<(int)m_word_pyps.size(); ++i) - { - m_word_pyps.at(i).reserve(m_num_topics); - for (int j=0; j<m_num_topics; ++j) - m_word_pyps.at(i).push_back(new PYP<int>(0.01, 1.0, m_seed)); - } - std::cerr << std::endl; - - m_document_pyps.reserve(corpus.num_documents()); - for (int j=0; j<corpus.num_documents(); ++j) - m_document_pyps.push_back(new PYP<int>(0.01, 1.0, m_seed)); - - m_topic_p0 = 1.0/m_num_topics; - m_term_p0 = 1.0/(F)m_backoff->terms_at_level(m_word_pyps.size()-1); - //m_term_p0 = 1.0/corpus.num_types(); - m_backoff_p0 = 1.0/corpus.num_documents(); - - std::cerr << " Documents: " << corpus.num_documents() << " Terms: " - << corpus.num_types() << std::endl; - - int frequency_cutoff = freq_cutoff_start; - std::cerr << " Context frequency cutoff set to " << frequency_cutoff << std::endl; - - timer.Reset(); - // Initialisation pass - int document_id=0, topic_counter=0; - for (Corpus::const_iterator corpusIt=corpus.begin(); - corpusIt != corpus.end(); ++corpusIt, ++document_id) { - m_corpus_topics.push_back(DocumentTopics(corpusIt->size(), 0)); - - int term_index=0; - for (Document::const_iterator docIt=corpusIt->begin(); - docIt != corpusIt->end(); ++docIt, ++term_index) { - topic_counter++; - Term term = *docIt; - - // sample a new_topic - //int new_topic = (topic_counter % m_num_topics); - int freq = corpus.context_count(term); - int new_topic = -1; - if (freq > frequency_cutoff - && (!max_contexts_per_document || term_index < max_contexts_per_document)) { - //new_topic = sample(document_id, term); - //new_topic = document_id % m_num_topics; - new_topic = (int) (rnd() * m_num_topics); - - // add the new topic to the PYPs - increment(term, new_topic); - - if (m_use_topic_pyp) { - F p0 = m_topic_pyp.prob(new_topic, m_topic_p0); - int table_delta = m_document_pyps[document_id].increment(new_topic, p0); - if (table_delta) - m_topic_pyp.increment(new_topic, m_topic_p0); - } - else m_document_pyps[document_id].increment(new_topic, m_topic_p0); - } - - m_corpus_topics[document_id][term_index] = new_topic; - } - } - std::cerr << " Initialized in " << timer.Elapsed() << " seconds\n"; - - int* randomDocIndices = new int[corpus.num_documents()]; - for (int i = 0; i < corpus.num_documents(); ++i) - randomDocIndices[i] = i; - - if (num_jobs < max_threads) - num_jobs = max_threads; - int job_incr = (int) ( (float)m_document_pyps.size() / float(num_jobs) ); - - // Sampling phase - for (int curr_sample=0; curr_sample < samples; ++curr_sample) { - if (freq_cutoff_interval > 0 && curr_sample != 1 - && curr_sample % freq_cutoff_interval == 1 - && frequency_cutoff > freq_cutoff_end) { - frequency_cutoff--; - std::cerr << "\n Context frequency cutoff set to " << frequency_cutoff << std::endl; - } - - F temp = 1.0 / (temp_start - curr_sample*(temp_start-temp_end)/samples); - std::cerr << "\n -- Sample " << curr_sample << " (T=" << temp << ") "; std::cerr.flush(); - - // Randomize the corpus indexing array - int tmp; - int processed_terms=0; - /* - for (int i = corpus.num_documents()-1; i > 0; --i) - { - //i+1 since j \in [0,i] but rnd() \in [0,1) - int j = (int)(rnd() * (i+1)); - assert(j >= 0 && j <= i); - tmp = randomDocIndices[i]; - randomDocIndices[i] = randomDocIndices[j]; - randomDocIndices[j] = tmp; - } - */ - - // for each document in the corpus - int document_id; - for (int i=0; i<corpus.num_documents(); ++i) { - document_id = randomDocIndices[i]; - - // for each term in the document - int term_index=0; - Document::const_iterator docEnd = corpus.at(document_id).end(); - for (Document::const_iterator docIt=corpus.at(document_id).begin(); - docIt != docEnd; ++docIt, ++term_index) { - if (max_contexts_per_document && term_index > max_contexts_per_document) - break; - - Term term = *docIt; - - int freq = corpus.context_count(term); - if (freq < frequency_cutoff) - continue; - - processed_terms++; - - // remove the prevous topic from the PYPs - int current_topic = m_corpus_topics[document_id][term_index]; - // a negative label mean that term hasn't been sampled yet - if (current_topic >= 0) { - decrement(term, current_topic); - - int table_delta = m_document_pyps[document_id].decrement(current_topic); - if (m_use_topic_pyp && table_delta < 0) - m_topic_pyp.decrement(current_topic); - } - - // sample a new_topic - int new_topic = sample(document_id, term, temp); - //std::cerr << "TERM: " << dict->Convert(term) << " (" << term << ") " << " Old Topic: " - // << current_topic << " New Topic: " << new_topic << "\n" << std::endl; - - // add the new topic to the PYPs - m_corpus_topics[document_id][term_index] = new_topic; - increment(term, new_topic); - - if (m_use_topic_pyp) { - F p0 = m_topic_pyp.prob(new_topic, m_topic_p0); - int table_delta = m_document_pyps[document_id].increment(new_topic, p0); - if (table_delta) - m_topic_pyp.increment(new_topic, m_topic_p0); - } - else m_document_pyps[document_id].increment(new_topic, m_topic_p0); - } - if (document_id && document_id % 10000 == 0) { - std::cerr << "."; std::cerr.flush(); - } - } - std::cerr << " ||| LLH= " << log_likelihood(); - - if (curr_sample != 0 && curr_sample % 10 == 0) { - //if (true) { - std::cerr << " ||| time=" << (timer.Elapsed() / 10.0) << " sec/sample" << std::endl; - timer.Reset(); - std::cerr << " ... Resampling hyperparameters ("; - - // resample the hyperparamters - F log_p=0.0; - if (max_threads == 1) - { - std::cerr << "1 thread)" << std::endl; std::cerr.flush(); - log_p += hresample_topics(); - log_p += hresample_docs(0, m_document_pyps.size()); - } - else - { //parallelize - std::cerr << max_threads << " threads, " << num_jobs << " jobs)" << std::endl; std::cerr.flush(); - - WorkerPool<JobReturnsF, F> pool(max_threads); - int i=0, sz = m_document_pyps.size(); - //documents... - while (i <= sz - 2*job_incr) - { - JobReturnsF job = boost::bind(&PYPTopics::hresample_docs, this, i, i+job_incr); - pool.addJob(job); - i += job_incr; - } - // do all remaining documents - JobReturnsF job = boost::bind(&PYPTopics::hresample_docs, this, i,sz); - pool.addJob(job); - - //topics... - JobReturnsF topics_job = boost::bind(&PYPTopics::hresample_topics, this); - pool.addJob(topics_job); - - log_p += pool.get_result(); //blocks - - } - - if (m_use_topic_pyp) { - m_topic_pyp.resample_prior(rnd); - log_p += m_topic_pyp.log_restaurant_prob(); - } - - std::cerr.precision(10); - std::cerr << " ||| LLH=" << log_likelihood() << " ||| resampling time=" << timer.Elapsed() << " sec" << std::endl; - timer.Reset(); - - int k=0; - std::cerr << "Topics distribution: "; - std::cerr.precision(2); - for (PYPs::iterator pypIt=m_word_pyps.front().begin(); - pypIt != m_word_pyps.front().end(); ++pypIt, ++k) { - if (k % 5 == 0) std::cerr << std::endl << '\t'; - std::cerr << "<" << k << ":" << pypIt->num_customers() << "," - << pypIt->num_types() << "," << m_topic_pyp.prob(k, m_topic_p0) << "> "; - } - std::cerr.precision(10); - std::cerr << std::endl; - } - } - delete [] randomDocIndices; -} - -PYPTopics::F PYPTopics::hresample_docs(int start, int end) -{ - int resample_counter=0; - F log_p = 0.0; - assert(start >= 0); - assert(end >= 0); - assert(start <= end); - for (int i=start; i < end; ++i) - { - m_document_pyps[i].resample_prior(rnd); - log_p += m_document_pyps[i].log_restaurant_prob(); - if (resample_counter++ % 5000 == 0) { - std::cerr << "."; std::cerr.flush(); - } - } - return log_p; -} - -PYPTopics::F PYPTopics::hresample_topics() -{ - F log_p = 0.0; - for (std::vector<PYPs>::iterator levelIt=m_word_pyps.begin(); - levelIt != m_word_pyps.end(); ++levelIt) { - for (PYPs::iterator pypIt=levelIt->begin(); - pypIt != levelIt->end(); ++pypIt) { - - pypIt->resample_prior(rnd); - log_p += pypIt->log_restaurant_prob(); - } - std::cerr << log_p << std::endl; - } - return log_p; -} - -PYPTopics::F PYPTopics::log_likelihood() const -{ - F log_p = 0.0; - - // LLH of topic term distribution - size_t i=0; - for (std::vector<PYPs>::const_iterator levelIt=m_word_pyps.begin(); - levelIt != m_word_pyps.end(); ++levelIt, ++i) { - for (PYPs::const_iterator pypIt=levelIt->begin(); - pypIt != levelIt->end(); ++pypIt, ++i) { - log_p += pypIt->log_restaurant_prob(); - - if (i == m_word_pyps.size()-1) - log_p += (pypIt->num_tables() * -log(m_backoff->terms_at_level(i))); - else - log_p += (pypIt->num_tables() * log(m_term_p0)); - } - } - std::cerr << " TERM LLH: " << log_p << " "; //std::endl; - - // LLH of document topic distribution - for (size_t i=0; i < m_document_pyps.size(); ++i) { - log_p += m_document_pyps[i].log_restaurant_prob(); - if (!m_use_topic_pyp) log_p += (m_document_pyps[i].num_tables() * m_topic_p0); - } - if (m_use_topic_pyp) { - log_p += m_topic_pyp.log_restaurant_prob(); - log_p += (m_topic_pyp.num_tables() * log(m_topic_p0)); - } - - return log_p; -} - -void PYPTopics::decrement(const Term& term, int topic, int level) { - //std::cerr << "PYPTopics::decrement(" << term << "," << topic << "," << level << ")" << std::endl; - int table_delta = m_word_pyps.at(level).at(topic).decrement(term); - if (table_delta && m_backoff.get()) { - Term backoff_term = (*m_backoff)[term]; - if (!m_backoff->is_null(backoff_term)) - decrement(backoff_term, topic, level+1); - } -} - -void PYPTopics::increment(const Term& term, int topic, int level) { - //std::cerr << "PYPTopics::increment(" << term << "," << topic << "," << level << ")" << std::endl; - int table_delta = m_word_pyps.at(level).at(topic).increment(term, word_pyps_p0(term, topic, level)); - - if (table_delta && m_backoff.get()) { - Term backoff_term = (*m_backoff)[term]; - if (!m_backoff->is_null(backoff_term)) - increment(backoff_term, topic, level+1); - } -} - -int PYPTopics::sample(const DocumentId& doc, const Term& term, F inv_temp) { - // First pass: collect probs - F sum=0.0; - std::vector<F> sums; - for (int k=0; k<m_num_topics; ++k) { - F p_w_k = prob(term, k); - - F topic_prob = m_topic_p0; - if (m_use_topic_pyp) topic_prob = m_topic_pyp.prob(k, m_topic_p0); - - //F p_k_d = m_document_pyps[doc].prob(k, topic_prob); - F p_k_d = m_document_pyps[doc].unnormalised_prob(k, topic_prob); - - F prob = p_w_k*p_k_d; - /* - if (prob < 0.0) { std::cerr << "\n\n" << prob << " " << p_w_k << " " << p_k_d << std::endl; assert(false); } - if (prob > 1.0) { std::cerr << "\n\n" << prob << " " << p_w_k << " " << p_k_d << std::endl; assert(false); } - assert (pow(prob, inv_temp) >= 0.0); - assert (pow(prob, inv_temp) <= 1.0); - */ - sum += pow(prob, inv_temp); - sums.push_back(sum); - } - // Second pass: sample a topic - F cutoff = rnd() * sum; - for (int k=0; k<m_num_topics; ++k) { - if (cutoff <= sums[k]) - return k; - } - assert(false); -} - -PYPTopics::F PYPTopics::word_pyps_p0(const Term& term, int topic, int level) const { - //for (int i=0; i<level+1; ++i) std::cerr << " "; - //std::cerr << "PYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ")" << std::endl; - - F p0 = m_term_p0; - if (m_backoff.get()) { - //static F fudge=m_backoff_p0; // TODO - - Term backoff_term = (*m_backoff)[term]; - //std::cerr << "T: " << term << " BO: " << backoff_term << std::endl; - if (!m_backoff->is_null(backoff_term)) { - assert (level < m_backoff->order()); - //p0 = (1.0/(F)m_backoff->terms_at_level(level))*prob(backoff_term, topic, level+1); - p0 = m_term_p0*prob(backoff_term, topic, level+1); - p0 = prob(backoff_term, topic, level+1); - } - else - p0 = (1.0/(F) m_backoff->terms_at_level(level)); - //p0 = m_term_p0; - } - //for (int i=0; i<level+1; ++i) std::cerr << " "; - //std::cerr << "PYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ") = " << p0 << std::endl; - return p0; -} - -PYPTopics::F PYPTopics::prob(const Term& term, int topic, int level) const { - //for (int i=0; i<level+1; ++i) std::cerr << " "; - //std::cerr << "PYPTopics::prob(" << dict->Convert(term) << "," << topic << "," << level << ")" << std::endl; - - F p0 = word_pyps_p0(term, topic, level); - F p_w_k = m_word_pyps.at(level).at(topic).prob(term, p0); - - /* - for (int i=0; i<level+1; ++i) std::cerr << " "; - std::cerr << "PYPTopics::prob(" << dict->Convert(term) << "," << topic << "," << level << ") = " << p_w_k << std::endl; - for (int i=0; i<level+1; ++i) std::cerr << " "; - m_word_pyps.at(level).at(topic).debug_info(std::cerr); - */ - return p_w_k; -} - -int PYPTopics::max_topic() const { - if (!m_use_topic_pyp) - return -1; - - F current_max=0.0; - int current_topic=-1; - for (int k=0; k<m_num_topics; ++k) { - F prob = m_topic_pyp.prob(k, m_topic_p0); - if (prob > current_max) { - current_max = prob; - current_topic = k; - } - } - assert(current_topic >= 0); - return current_topic; -} - -std::pair<int,PYPTopics::F> PYPTopics::max(const DocumentId& doc) const { - //std::cerr << "PYPTopics::max(" << doc << "," << term << ")" << std::endl; - // collect probs - F current_max=0.0; - int current_topic=-1; - for (int k=0; k<m_num_topics; ++k) { - //F p_w_k = prob(term, k); - - F topic_prob = m_topic_p0; - if (m_use_topic_pyp) - topic_prob = m_topic_pyp.prob(k, m_topic_p0); - - F prob = 0; - if (doc < 0) prob = topic_prob; - else prob = m_document_pyps[doc].prob(k, topic_prob); - - if (prob > current_max) { - current_max = prob; - current_topic = k; - } - } - assert(current_topic >= 0); - assert(current_max >= 0); - return std::make_pair(current_topic, current_max); -} - -std::pair<int,PYPTopics::F> PYPTopics::max(const DocumentId& doc, const Term& term) const { - //std::cerr << "PYPTopics::max(" << doc << "," << term << ")" << std::endl; - // collect probs - F current_max=0.0; - int current_topic=-1; - for (int k=0; k<m_num_topics; ++k) { - F p_w_k = prob(term, k); - - F topic_prob = m_topic_p0; - if (m_use_topic_pyp) - topic_prob = m_topic_pyp.prob(k, m_topic_p0); - - F p_k_d = 0; - if (doc < 0) p_k_d = topic_prob; - else p_k_d = m_document_pyps[doc].prob(k, topic_prob); - - F prob = (p_w_k*p_k_d); - if (prob > current_max) { - current_max = prob; - current_topic = k; - } - } - assert(current_topic >= 0); - assert(current_max >= 0); - return std::make_pair(current_topic,current_max); -} - -std::ostream& PYPTopics::print_document_topics(std::ostream& out) const { - for (CorpusTopics::const_iterator corpusIt=m_corpus_topics.begin(); - corpusIt != m_corpus_topics.end(); ++corpusIt) { - int term_index=0; - for (DocumentTopics::const_iterator docIt=corpusIt->begin(); - docIt != corpusIt->end(); ++docIt, ++term_index) { - if (term_index) out << " "; - out << *docIt; - } - out << std::endl; - } - return out; -} - -std::ostream& PYPTopics::print_topic_terms(std::ostream& out) const { - for (PYPs::const_iterator pypsIt=m_word_pyps.front().begin(); - pypsIt != m_word_pyps.front().end(); ++pypsIt) { - int term_index=0; - for (PYP<int>::const_iterator termIt=pypsIt->begin(); - termIt != pypsIt->end(); ++termIt, ++term_index) { - if (term_index) out << " "; - out << termIt->first << ":" << termIt->second; - } - out << std::endl; - } - return out; -} |