summaryrefslogtreecommitdiff
path: root/gi/posterior-regularisation/em.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2012-10-11 14:06:32 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2012-10-11 14:06:32 -0400
commit07ea7b64b6f85e5798a8068453ed9fd2b97396db (patch)
tree644496a1690d84d82a396bbc1e39160788beb2cd /gi/posterior-regularisation/em.cc
parent37b9e45e5cb29d708f7249dbe0b0fb27685282a0 (diff)
parenta36fcc5d55c1de84ae68c1091ebff2b1c32dc3b7 (diff)
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'gi/posterior-regularisation/em.cc')
-rw-r--r--gi/posterior-regularisation/em.cc830
1 files changed, 0 insertions, 830 deletions
diff --git a/gi/posterior-regularisation/em.cc b/gi/posterior-regularisation/em.cc
deleted file mode 100644
index f6c9fd68..00000000
--- a/gi/posterior-regularisation/em.cc
+++ /dev/null
@@ -1,830 +0,0 @@
-// Input of the form:
-// " the phantom of the opera " tickets for <PHRASE> tonight ? ||| C=1 ||| seats for <PHRASE> ? </s> ||| C=1 ||| i see <PHRASE> ? </s> ||| C=1
-// phrase TAB [context]+
-// where context = phrase ||| C=... which are separated by |||
-
-// Model parameterised as follows:
-// - each phrase, p, is allocated a latent state, t
-// - this is used to generate the contexts, c
-// - each context is generated using 4 independent multinomials, one for each position LL, L, R, RR
-
-// Training with EM:
-// - e-step is estimating P(t|p,c) for all x,c
-// - m-step is estimating model parameters P(p,c,t) = P(t) P(p|t) P(c|t)
-
-// Sexing it up:
-// - constrain the posteriors P(t|c) and P(t|p) to have few high-magnitude entries
-// - improve the generation of phrase internals, e.g., generate edge words from
-// different distribution to central words
-
-#include "alphabet.hh"
-#include "log_add.hh"
-#include <algorithm>
-#include <fstream>
-#include <iostream>
-#include <iterator>
-#include <map>
-#include <sstream>
-#include <stdexcept>
-#include <vector>
-#include <tr1/random>
-#include <tr1/tuple>
-#include <nlopt.h>
-
-using namespace std;
-using namespace std::tr1;
-
-const int numTags = 5;
-const int numIterations = 100;
-const bool posterior_regularisation = true;
-const double PHRASE_VIOLATION_WEIGHT = 10;
-const double CONTEXT_VIOLATION_WEIGHT = 0;
-const bool includePhraseProb = false;
-
-// Data structures:
-Alphabet<string> lexicon;
-typedef vector<int> Phrase;
-typedef tuple<int, int, int, int> Context;
-Alphabet<Phrase> phrases;
-Alphabet<Context> contexts;
-
-typedef map<int, int> ContextCounts;
-typedef map<int, int> PhraseCounts;
-typedef map<int, ContextCounts> PhraseToContextCounts;
-typedef map<int, PhraseCounts> ContextToPhraseCounts;
-
-PhraseToContextCounts concordancePhraseToContexts;
-ContextToPhraseCounts concordanceContextToPhrases;
-
-typedef vector<double> Dist;
-typedef vector<Dist> ConditionalDist;
-Dist prior; // class -> P(class)
-vector<ConditionalDist> probCtx; // word -> class -> P(word | class), for each position of context word
-ConditionalDist probPhrase; // class -> P(word | class)
-Dist probPhraseLength; // class -> P(length | class) expressed as geometric distribution parameter
-
-mt19937 randomGenerator((size_t) time(NULL));
-uniform_real<double> uniDist(0.0, 1e-1);
-variate_generator< mt19937, uniform_real<double> > rng(randomGenerator, uniDist);
-
-void addRandomNoise(Dist &d);
-void normalise(Dist &d);
-void addTo(Dist &d, const Dist &e);
-int argmax(const Dist &d);
-
-map<Phrase, map<Context, int> > lambda_indices;
-
-Dist conditional_probs(const Phrase &phrase, const Context &context, double *normalisation = 0);
-template <typename T>
-Dist
-penalised_conditionals(const Phrase &phrase, const Context &context,
- const T &lambda, double *normalisation);
-//Dist penalised_conditionals(const Phrase &phrase, const Context &context, const double *lambda, double *normalisation = 0);
-double penalised_log_likelihood(int n, const double *lambda, double *gradient, void *data);
-void optimise_lambda(double delta, double gamma, vector<double> &lambda);
-double expected_violation_phrases(const double *lambda);
-double expected_violation_contexts(const double *lambda);
-double primal_kl_divergence(const double *lambda);
-double dual(const double *lambda);
-void print_primal_dual(const double *lambda, double delta, double gamma);
-
-ostream &operator<<(ostream &, const Phrase &);
-ostream &operator<<(ostream &, const Context &);
-ostream &operator<<(ostream &, const Dist &);
-ostream &operator<<(ostream &, const ConditionalDist &);
-
-int
-main(int argc, char *argv[])
-{
- randomGenerator.seed(time(NULL));
-
- int edges = 0;
- istream &input = cin;
- while (input.good())
- {
- // read the phrase
- string phraseString;
- Phrase phrase;
- getline(input, phraseString, '\t');
- istringstream pinput(phraseString);
- string token;
- while (pinput >> token)
- phrase.push_back(lexicon.insert(token));
- int phraseId = phrases.insert(phrase);
-
- // read the rest, storing each context
- string remainder;
- getline(input, remainder, '\n');
- istringstream rinput(remainder);
- Context context(-1, -1, -1, -1);
- int index = 0;
- while (rinput >> token)
- {
- if (token != "|||" && token != "<PHRASE>")
- {
- if (index < 4)
- {
- // eugh! damn templates
- switch (index)
- {
- case 0: get<0>(context) = lexicon.insert(token); break;
- case 1: get<1>(context) = lexicon.insert(token); break;
- case 2: get<2>(context) = lexicon.insert(token); break;
- case 3: get<3>(context) = lexicon.insert(token); break;
- default: assert(false);
- }
- index += 1;
- }
- else if (token.find("C=") == 0)
- {
- int contextId = contexts.insert(context);
- int count = atoi(token.substr(strlen("C=")).c_str());
- concordancePhraseToContexts[phraseId][contextId] += count;
- concordanceContextToPhrases[contextId][phraseId] += count;
- index = 0;
- context = Context(-1, -1, -1, -1);
- edges += 1;
- }
- }
- }
-
- // trigger EOF
- input >> ws;
- }
-
- cout << "Read in " << phrases.size() << " phrases"
- << " and " << contexts.size() << " contexts"
- << " and " << edges << " edges"
- << " and " << lexicon.size() << " word types\n";
-
- // FIXME: filter out low count phrases and low count contexts (based on individual words?)
- // now populate model parameters with uniform + random noise
- prior.resize(numTags, 1.0);
- addRandomNoise(prior);
- normalise(prior);
-
- probCtx.resize(4, ConditionalDist(numTags, Dist(lexicon.size(), 1.0)));
- if (includePhraseProb)
- probPhrase.resize(numTags, Dist(lexicon.size(), 1.0));
- for (int t = 0; t < numTags; ++t)
- {
- for (int j = 0; j < 4; ++j)
- {
- addRandomNoise(probCtx[j][t]);
- normalise(probCtx[j][t]);
- }
- if (includePhraseProb)
- {
- addRandomNoise(probPhrase[t]);
- normalise(probPhrase[t]);
- }
- }
- if (includePhraseProb)
- {
- probPhraseLength.resize(numTags, 0.5); // geometric distribution p=0.5
- addRandomNoise(probPhraseLength);
- }
-
- cout << "\tprior: " << prior << "\n";
- //cout << "\tcontext: " << probCtx << "\n";
- //cout << "\tphrase: " << probPhrase << "\n";
- //cout << "\tphraseLen: " << probPhraseLength << endl;
-
- vector<double> lambda;
-
- // now do EM training
- for (int iteration = 0; iteration < numIterations; ++iteration)
- {
- cout << "EM iteration " << iteration << endl;
-
- if (posterior_regularisation)
- optimise_lambda(PHRASE_VIOLATION_WEIGHT, CONTEXT_VIOLATION_WEIGHT, lambda);
- //cout << "\tlambda " << lambda << endl;
-
- Dist countsPrior(numTags, 0.0);
- vector<ConditionalDist> countsCtx(4, ConditionalDist(numTags, Dist(lexicon.size(), 1e-10)));
- ConditionalDist countsPhrase(numTags, Dist(lexicon.size(), 1e-10));
- Dist countsPhraseLength(numTags, 0.0);
- Dist nPhrases(numTags, 0.0);
-
- double llh = 0;
- for (PhraseToContextCounts::iterator pcit = concordancePhraseToContexts.begin();
- pcit != concordancePhraseToContexts.end(); ++pcit)
- {
- const Phrase &phrase = phrases.type(pcit->first);
-
- // e-step: estimate latent class probs; compile (class,word) stats for m-step
- for (ContextCounts::iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
-
- double z = 0;
- Dist tagCounts;
- if (!posterior_regularisation)
- tagCounts = conditional_probs(phrase, context, &z);
- else
- tagCounts = penalised_conditionals(phrase, context, lambda, &z);
-
- llh += log(z) * ccit->second;
- addTo(countsPrior, tagCounts); // FIXME: times ccit->secon
-
- for (int t = 0; t < numTags; ++t)
- {
- for (int j = 0; j < 4; ++j)
- countsCtx[j][t][get<0>(context)] += tagCounts[t] * ccit->second;
-
- if (includePhraseProb)
- {
- for (Phrase::const_iterator pit = phrase.begin(); pit != phrase.end(); ++pit)
- countsPhrase[t][*pit] += tagCounts[t] * ccit->second;
- countsPhraseLength[t] += phrase.size() * tagCounts[t] * ccit->second;
- nPhrases[t] += tagCounts[t] * ccit->second;
- }
- }
- }
- }
-
- cout << "M-step\n";
-
- // m-step: normalise prior and (class,word) stats and assign to model parameters
- normalise(countsPrior);
- prior = countsPrior;
- for (int t = 0; t < numTags; ++t)
- {
- //cout << "\t\tt " << t << " prior " << countsPrior[t] << "\n";
- for (int j = 0; j < 4; ++j)
- normalise(countsCtx[j][t]);
- if (includePhraseProb)
- {
- normalise(countsPhrase[t]);
- countsPhraseLength[t] = nPhrases[t] / countsPhraseLength[t];
- }
- }
- probCtx = countsCtx;
- if (includePhraseProb)
- {
- probPhrase = countsPhrase;
- probPhraseLength = countsPhraseLength;
- }
-
- double *larray = new double[lambda.size()];
- copy(lambda.begin(), lambda.end(), larray);
- print_primal_dual(larray, PHRASE_VIOLATION_WEIGHT, CONTEXT_VIOLATION_WEIGHT);
- delete [] larray;
-
- //cout << "\tllh " << llh << endl;
- //cout << "\tprior: " << prior << "\n";
- //cout << "\tcontext: " << probCtx << "\n";
- //cout << "\tphrase: " << probPhrase << "\n";
- //cout << "\tphraseLen: " << probPhraseLength << "\n";
- }
-
- // output class membership
- for (PhraseToContextCounts::iterator pcit = concordancePhraseToContexts.begin();
- pcit != concordancePhraseToContexts.end(); ++pcit)
- {
- const Phrase &phrase = phrases.type(pcit->first);
- for (ContextCounts::iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
- Dist tagCounts = conditional_probs(phrase, context, 0);
- cout << phrase << " ||| " << context << " ||| " << argmax(tagCounts) << "\n";
- }
- }
-
- return 0;
-}
-
-void addRandomNoise(Dist &d)
-{
- for (Dist::iterator dit = d.begin(); dit != d.end(); ++dit)
- *dit += rng();
-}
-
-void normalise(Dist &d)
-{
- double z = 0;
- for (Dist::iterator dit = d.begin(); dit != d.end(); ++dit)
- z += *dit;
- for (Dist::iterator dit = d.begin(); dit != d.end(); ++dit)
- *dit /= z;
-}
-
-void addTo(Dist &d, const Dist &e)
-{
- assert(d.size() == e.size());
- for (int i = 0; i < (int) d.size(); ++i)
- d[i] += e[i];
-}
-
-int argmax(const Dist &d)
-{
- double best = d[0];
- int index = 0;
- for (int i = 1; i < (int) d.size(); ++i)
- {
- if (d[i] > best)
- {
- best = d[i];
- index = i;
- }
- }
- return index;
-}
-
-ostream &operator<<(ostream &out, const Phrase &phrase)
-{
- for (Phrase::const_iterator pit = phrase.begin(); pit != phrase.end(); ++pit)
- lexicon.display(((pit == phrase.begin()) ? out : out << " "), *pit);
- return out;
-}
-
-ostream &operator<<(ostream &out, const Context &context)
-{
- lexicon.display(out, get<0>(context));
- lexicon.display(out << " ", get<1>(context));
- lexicon.display(out << " <PHRASE> ", get<2>(context));
- lexicon.display(out << " ", get<3>(context));
- return out;
-}
-
-ostream &operator<<(ostream &out, const Dist &dist)
-{
- for (Dist::const_iterator dit = dist.begin(); dit != dist.end(); ++dit)
- out << ((dit == dist.begin()) ? "" : " ") << *dit;
- return out;
-}
-
-ostream &operator<<(ostream &out, const ConditionalDist &dist)
-{
- for (ConditionalDist::const_iterator dit = dist.begin(); dit != dist.end(); ++dit)
- out << ((dit == dist.begin()) ? "" : "; ") << *dit;
- return out;
-}
-
-// FIXME: slow - just use the phrase index, context index to do the mapping
-// (n.b. it's a sparse setup, not just equal to 3d array index)
-int
-lambda_index(const Phrase &phrase, const Context &context, int tag)
-{
- return lambda_indices[phrase][context] + tag;
-}
-
-template <typename T>
-Dist
-penalised_conditionals(const Phrase &phrase, const Context &context,
- const T &lambda, double *normalisation)
-{
- Dist d = conditional_probs(phrase, context, 0);
-
- double z = 0;
- for (int t = 0; t < numTags; ++t)
- {
- d[t] *= exp(-lambda[lambda_index(phrase, context, t)]);
- z += d[t];
- }
-
- if (normalisation)
- *normalisation = z;
-
- for (int t = 0; t < numTags; ++t)
- d[t] /= z;
-
- return d;
-}
-
-Dist
-conditional_probs(const Phrase &phrase, const Context &context, double *normalisation)
-{
- Dist tagCounts(numTags, 0.0);
- double z = 0;
- for (int t = 0; t < numTags; ++t)
- {
- double prob = prior[t];
- prob *= (probCtx[0][t][get<0>(context)] * probCtx[1][t][get<1>(context)] *
- probCtx[2][t][get<2>(context)] * probCtx[3][t][get<3>(context)]);
-
- if (includePhraseProb)
- {
- prob *= pow(1 - probPhraseLength[t], phrase.size() - 1) * probPhraseLength[t];
- for (Phrase::const_iterator pit = phrase.begin(); pit != phrase.end(); ++pit)
- prob *= probPhrase[t][*pit];
- }
-
- tagCounts[t] = prob;
- z += prob;
- }
- if (normalisation)
- *normalisation = z;
-
- for (int t = 0; t < numTags; ++t)
- tagCounts[t] /= z;
-
- return tagCounts;
-}
-
-double
-penalised_log_likelihood(int n, const double *lambda, double *grad, void *)
-{
- // return log Z(lambda, theta) over the corpus
- // where theta are the global parameters (prior, probCtx*, probPhrase*)
- // and lambda are lagrange multipliers for the posterior sparsity constraints
- //
- // this is formulated as:
- // f = log Z(lambda) = sum_i log ( sum_i p_theta(t_i|p_i,c_i) exp [-lambda_{t_i,p_i,c_i}] )
- // where i indexes the training examples - specifying the (p, c) pair (which may occur with count > 1)
- //
- // with derivative:
- // f'_{tpc} = frac { - count(t,p,c) p_theta(t|p,c) exp (-lambda_{t,p,c}) }
- // { sum_t' p_theta(t'|p,c) exp (-lambda_{t',p,c}) }
-
- //cout << "penalised_log_likelihood with lambda ";
- //copy(lambda, lambda+n, ostream_iterator<double>(cout, " "));
- //cout << "\n";
-
- double f = 0;
- if (grad)
- {
- for (int i = 0; i < n; ++i)
- grad[i] = 0.0;
- }
-
- for (int p = 0; p < phrases.size(); ++p)
- {
- const Phrase &phrase = phrases.type(p);
- PhraseToContextCounts::const_iterator pcit = concordancePhraseToContexts.find(p);
- for (ContextCounts::const_iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
- double z = 0;
- Dist scores = penalised_conditionals(phrase, context, lambda, &z);
-
- f += ccit->second * log(z);
- //cout << "\tphrase: " << phrase << " context: " << context << " count: " << ccit->second << " z " << z << endl;
- //cout << "\t\tscores: " << scores << "\n";
-
- if (grad)
- {
- for (int t = 0; t < numTags; ++t)
- {
- int i = lambda_index(phrase, context, t); // FIXME: redundant lookups
- assert(grad[i] == 0.0);
- grad[i] = - ccit->second * scores[t];
- }
- }
- }
- }
-
- //cout << "penalised_log_likelihood returning " << f;
- //if (grad)
- //{
- //cout << "\ngradient: ";
- //copy(grad, grad+n, ostream_iterator<double>(cout, " "));
- //}
- //cout << "\n";
-
- return f;
-}
-
-typedef struct
-{
- // one of p or c should be set to -1, in which case it will be marginalised out
- // i.e. sum_p' lambda_{p'ct} <= threshold
- // or sum_c' lambda_{pc't} <= threshold
- int p, c, t, threshold;
-} constraint_data;
-
-double
-constraint_and_gradient(int n, const double *lambda, double *grad, void *data)
-{
- constraint_data *d = (constraint_data *) data;
- assert(d->t >= 0);
- assert(d->threshold >= 0);
-
- //cout << "constraint_and_gradient: t " << d->t << " p " << d->p << " c " << d->c << " tau " << d->threshold << endl;
- //cout << "\tlambda ";
- //copy(lambda, lambda+n, ostream_iterator<double>(cout, " "));
- //cout << "\n";
-
- // FIXME: it's crazy to use a dense gradient here => will only have a handful of non-zero entries
- if (grad)
- {
- for (int i = 0; i < n; ++i)
- grad[i] = 0.0;
- }
-
- //cout << "constraint_and_gradient: " << d->p << "; " << d->c << "; " << d->t << "; " << d->threshold << endl;
-
- if (d->p >= 0)
- {
- assert(d->c < 0);
- // sum_c lambda_pct <= delta [a.k.a. threshold]
- // => sum_c lambda_pct - delta <= 0
- // derivative_pct = { 1, if p and t match; 0, otherwise }
-
- double val = -d->threshold;
-
- const Phrase &phrase = phrases.type(d->p);
- PhraseToContextCounts::const_iterator pcit = concordancePhraseToContexts.find(d->p);
- assert(pcit != concordancePhraseToContexts.end());
- for (ContextCounts::const_iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
- int i = lambda_index(phrase, context, d->t);
- val += lambda[i];
- if (grad) grad[i] = 1;
- }
- //cout << "\treturning " << val << endl;
-
- return val;
- }
- else
- {
- assert(d->c >= 0);
- assert(d->p < 0);
- // sum_p lambda_pct <= gamma [a.k.a. threshold]
- // => sum_p lambda_pct - gamma <= 0
- // derivative_pct = { 1, if c and t match; 0, otherwise }
-
- double val = -d->threshold;
-
- const Context &context = contexts.type(d->c);
- ContextToPhraseCounts::iterator cpit = concordanceContextToPhrases.find(d->c);
- assert(cpit != concordanceContextToPhrases.end());
- for (PhraseCounts::iterator pcit = cpit->second.begin();
- pcit != cpit->second.end(); ++pcit)
- {
- const Phrase &phrase = phrases.type(pcit->first);
- int i = lambda_index(phrase, context, d->t);
- val += lambda[i];
- if (grad) grad[i] = 1;
- }
- //cout << "\treturning " << val << endl;
-
- return val;
- }
-}
-
-void
-optimise_lambda(double delta, double gamma, vector<double> &lambdav)
-{
- int num_lambdas = lambdav.size();
- if (lambda_indices.empty() || lambdav.empty())
- {
- lambda_indices.clear();
- lambdav.clear();
-
- int i = 0;
- for (int p = 0; p < phrases.size(); ++p)
- {
- const Phrase &phrase = phrases.type(p);
- PhraseToContextCounts::iterator pcit = concordancePhraseToContexts.find(p);
- for (ContextCounts::iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
- lambda_indices[phrase][context] = i;
- i += numTags;
- }
- }
- num_lambdas = i;
- lambdav.resize(num_lambdas);
- }
- //cout << "optimise_lambda: #langrange multipliers " << num_lambdas << endl;
-
- // FIXME: better to work with an implicit representation to save memory usage
- int num_constraints = (((delta > 0) ? phrases.size() : 0) + ((gamma > 0) ? contexts.size() : 0)) * numTags;
- //cout << "optimise_lambda: #constraints " << num_constraints << endl;
- constraint_data *data = new constraint_data[num_constraints];
- int i = 0;
- if (delta > 0)
- {
- for (int p = 0; p < phrases.size(); ++p)
- {
- for (int t = 0; t < numTags; ++t, ++i)
- {
- constraint_data &d = data[i];
- d.p = p;
- d.c = -1;
- d.t = t;
- d.threshold = delta;
- }
- }
- }
-
- if (gamma > 0)
- {
- for (int c = 0; c < contexts.size(); ++c)
- {
- for (int t = 0; t < numTags; ++t, ++i)
- {
- constraint_data &d = data[i];
- d.p = -1;
- d.c = c;
- d.t = t;
- d.threshold = gamma;
- }
- }
- }
- assert(i == num_constraints);
-
- double lambda[num_lambdas];
- double lb[num_lambdas], ub[num_lambdas];
- for (i = 0; i < num_lambdas; ++i)
- {
- lambda[i] = lambdav[i]; // starting value
- lb[i] = 0; // lower bound
- if (delta <= 0) // upper bound
- ub[i] = gamma;
- else if (gamma <= 0)
- ub[i] = delta;
- else
- assert(false);
- }
-
- //print_primal_dual(lambda, delta, gamma);
-
- double minf;
- int error_code = nlopt_minimize_constrained(NLOPT_LN_COBYLA, num_lambdas, penalised_log_likelihood, NULL,
- num_constraints, constraint_and_gradient, data, sizeof(constraint_data),
- lb, ub, lambda, &minf, -HUGE_VAL, 0.0, 0.0, 1e-4, NULL, 0, 0.0);
- //cout << "optimise error code " << error_code << endl;
-
- //print_primal_dual(lambda, delta, gamma);
-
- delete [] data;
-
- if (error_code < 0)
- cout << "WARNING: optimisation failed with error code: " << error_code << endl;
- //else
- //{
- //cout << "success; minf " << minf << endl;
- //print_primal_dual(lambda, delta, gamma);
- //}
-
- lambdav = vector<double>(&lambda[0], &lambda[0] + num_lambdas);
-}
-
-// FIXME: inefficient - cache the scores
-double
-expected_violation_phrases(const double *lambda)
-{
- // sum_pt max_c E_q[phi_pct]
- double violation = 0;
-
- for (int p = 0; p < phrases.size(); ++p)
- {
- const Phrase &phrase = phrases.type(p);
- PhraseToContextCounts::const_iterator pcit = concordancePhraseToContexts.find(p);
-
- for (int t = 0; t < numTags; ++t)
- {
- double best = 0;
- for (ContextCounts::const_iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
- Dist scores = penalised_conditionals(phrase, context, lambda, 0);
- best = max(best, scores[t]);
- }
- violation += best;
- }
- }
-
- return violation;
-}
-
-// FIXME: inefficient - cache the scores
-double
-expected_violation_contexts(const double *lambda)
-{
- // sum_ct max_p E_q[phi_pct]
- double violation = 0;
-
- for (int c = 0; c < contexts.size(); ++c)
- {
- const Context &context = contexts.type(c);
- ContextToPhraseCounts::iterator cpit = concordanceContextToPhrases.find(c);
-
- for (int t = 0; t < numTags; ++t)
- {
- double best = 0;
- for (PhraseCounts::iterator pit = cpit->second.begin();
- pit != cpit->second.end(); ++pit)
- {
- const Phrase &phrase = phrases.type(pit->first);
- Dist scores = penalised_conditionals(phrase, context, lambda, 0);
- best = max(best, scores[t]);
- }
- violation += best;
- }
- }
-
- return violation;
-}
-
-// FIXME: possibly inefficient
-double
-primal_likelihood() // FIXME: primal evaluation needs to use lambda and calculate l1linf terms
-{
- double llh = 0;
- for (int p = 0; p < phrases.size(); ++p)
- {
- const Phrase &phrase = phrases.type(p);
- PhraseToContextCounts::const_iterator pcit = concordancePhraseToContexts.find(p);
- for (ContextCounts::const_iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
- double z = 0;
- Dist scores = conditional_probs(phrase, context, &z);
- llh += ccit->second * log(z);
- }
- }
- return llh;
-}
-
-// FIXME: inefficient - cache the scores
-double
-primal_kl_divergence(const double *lambda)
-{
- // return KL(q || p) = sum_y q(y) { log q(y) - log p(y | x) }
- // = sum_y q(y) { log p(y | x) - lambda . phi(x, y) - log Z - log p(y | x) }
- // = sum_y q(y) { - lambda . phi(x, y) } - log Z
- // and q(y) factors with each edge, ditto for Z
-
- double feature_sum = 0, log_z = 0;
- for (int p = 0; p < phrases.size(); ++p)
- {
- const Phrase &phrase = phrases.type(p);
- PhraseToContextCounts::const_iterator pcit = concordancePhraseToContexts.find(p);
- for (ContextCounts::const_iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
-
- double local_z = 0;
- double local_f = 0;
- Dist d = conditional_probs(phrase, context, 0);
- for (int t = 0; t < numTags; ++t)
- {
- int i = lambda_index(phrase, context, t);
- double s = d[t] * exp(-lambda[i]);
- local_f += lambda[i] * s;
- local_z += s;
- }
-
- log_z += ccit->second * log(local_z);
- feature_sum += ccit->second * (local_f / local_z);
- }
- }
-
- return -feature_sum - log_z;
-}
-
-// FIXME: inefficient - cache the scores
-double
-dual(const double *lambda)
-{
- // return log(Z) = - log { sum_y p(y | x) exp( - lambda . phi(x, y) }
- // n.b. have flipped the sign as we're minimising
-
- double z = 0;
- for (int p = 0; p < phrases.size(); ++p)
- {
- const Phrase &phrase = phrases.type(p);
- PhraseToContextCounts::const_iterator pcit = concordancePhraseToContexts.find(p);
- for (ContextCounts::const_iterator ccit = pcit->second.begin();
- ccit != pcit->second.end(); ++ccit)
- {
- const Context &context = contexts.type(ccit->first);
- double lz = 0;
- Dist scores = penalised_conditionals(phrase, context, lambda, &z);
- z += lz * ccit->second;
- }
- }
- return log(z);
-}
-
-void
-print_primal_dual(const double *lambda, double delta, double gamma)
-{
- double likelihood = primal_likelihood();
- double kl = primal_kl_divergence(lambda);
- double sum_pt = expected_violation_phrases(lambda);
- double sum_ct = expected_violation_contexts(lambda);
- //double d = dual(lambda);
-
- cout << "\tllh=" << likelihood
- << " kl=" << kl
- << " violations phrases=" << sum_pt
- << " contexts=" << sum_ct
- //<< " primal=" << (kl + delta * sum_pt + gamma * sum_ct)
- //<< " dual=" << d
- << " objective=" << (likelihood - kl + delta * sum_pt + gamma * sum_ct)
- << endl;
-}