diff options
| author | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-04-07 16:58:55 +0200 | 
|---|---|---|
| committer | Patrick Simianer <simianer@cl.uni-heidelberg.de> | 2012-04-07 16:58:55 +0200 | 
| commit | 715245dc7042ac0dca4fea94031d7c6de8058033 (patch) | |
| tree | 3a7ff0b88f2e113a08aef663d2487edec0b5f67f /gi/pf | |
| parent | 89211ab30937672d84a54fac8fa435805499e38d (diff) | |
| parent | 6001b81eba37985d2e7dea6e6ebb488b787789a6 (diff) | |
Merge remote-tracking branch 'upstream/master'
Diffstat (limited to 'gi/pf')
| -rw-r--r-- | gi/pf/Makefile.am | 10 | ||||
| -rw-r--r-- | gi/pf/align-lexonly-pyp.cc | 10 | ||||
| -rw-r--r-- | gi/pf/align-tl.cc | 2 | ||||
| -rw-r--r-- | gi/pf/bayes_lattice_score.cc | 309 | ||||
| -rw-r--r-- | gi/pf/brat.cc | 2 | ||||
| -rw-r--r-- | gi/pf/cfg_wfst_composer.cc | 3 | ||||
| -rw-r--r-- | gi/pf/condnaive.cc | 2 | ||||
| -rw-r--r-- | gi/pf/dpnaive.cc | 2 | ||||
| -rw-r--r-- | gi/pf/hpyp_tm.cc | 133 | ||||
| -rw-r--r-- | gi/pf/hpyp_tm.h | 38 | ||||
| -rw-r--r-- | gi/pf/itg.cc | 2 | ||||
| -rw-r--r-- | gi/pf/learn_cfg.cc | 2 | ||||
| -rw-r--r-- | gi/pf/mh_test.cc | 148 | ||||
| -rw-r--r-- | gi/pf/pf_test.cc | 148 | ||||
| -rw-r--r-- | gi/pf/pfbrat.cc | 2 | ||||
| -rw-r--r-- | gi/pf/pfdist.cc | 2 | ||||
| -rw-r--r-- | gi/pf/pfnaive.cc | 2 | ||||
| -rw-r--r-- | gi/pf/poisson_uniform_word_model.h | 50 | ||||
| -rw-r--r-- | gi/pf/pyp_lm.cc | 2 | ||||
| -rw-r--r-- | gi/pf/pyp_tm.cc | 11 | ||||
| -rw-r--r-- | gi/pf/pyp_tm.h | 7 | ||||
| -rw-r--r-- | gi/pf/pyp_word_model.cc | 20 | ||||
| -rw-r--r-- | gi/pf/pyp_word_model.h | 46 | ||||
| -rw-r--r-- | gi/pf/quasi_model2.h | 13 | ||||
| -rw-r--r-- | gi/pf/tied_resampler.h | 6 | 
25 files changed, 899 insertions, 73 deletions
| diff --git a/gi/pf/Makefile.am b/gi/pf/Makefile.am index f9c979d0..86f8e07b 100644 --- a/gi/pf/Makefile.am +++ b/gi/pf/Makefile.am @@ -1,8 +1,14 @@ -bin_PROGRAMS = cbgi brat dpnaive pfbrat pfdist itg pfnaive condnaive align-lexonly-pyp learn_cfg pyp_lm nuisance_test align-tl +bin_PROGRAMS = cbgi brat dpnaive pfbrat pfdist itg pfnaive condnaive align-lexonly-pyp learn_cfg pyp_lm nuisance_test align-tl pf_test bayes_lattice_score  noinst_LIBRARIES = libpf.a -libpf_a_SOURCES = base_distributions.cc reachability.cc cfg_wfst_composer.cc corpus.cc unigrams.cc ngram_base.cc transliterations.cc backward.cc pyp_word_model.cc pyp_tm.cc +libpf_a_SOURCES = base_distributions.cc reachability.cc cfg_wfst_composer.cc corpus.cc unigrams.cc ngram_base.cc transliterations.cc backward.cc hpyp_tm.cc pyp_tm.cc + +bayes_lattice_score_SOURCES = bayes_lattice_score.cc +bayes_lattice_score_LDADD = libpf.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a $(top_srcdir)/klm/lm/libklm.a $(top_srcdir)/klm/util/libklm_util.a -lz + +pf_test_SOURCES = pf_test.cc +pf_test_LDADD = libpf.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a $(top_srcdir)/klm/lm/libklm.a $(top_srcdir)/klm/util/libklm_util.a -lz  nuisance_test_SOURCES = nuisance_test.cc  nuisance_test_LDADD = libpf.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a $(top_srcdir)/klm/lm/libklm.a $(top_srcdir)/klm/util/libklm_util.a -lz diff --git a/gi/pf/align-lexonly-pyp.cc b/gi/pf/align-lexonly-pyp.cc index 942dcf51..e7509f57 100644 --- a/gi/pf/align-lexonly-pyp.cc +++ b/gi/pf/align-lexonly-pyp.cc @@ -11,6 +11,7 @@  #include "sampler.h"  #include "corpus.h"  #include "pyp_tm.h" +#include "hpyp_tm.h"  #include "quasi_model2.h"  using namespace std; @@ -61,15 +62,17 @@ struct AlignedSentencePair {    Array2D<short> posterior;  }; +template <class LexicalTranslationModel>  struct Aligner {    Aligner(const vector<vector<WordID> >& lets, +          int vocab_size,            int num_letters,            const po::variables_map& conf,            vector<AlignedSentencePair>* c) :        corpus(*c),        paj_model(conf["align_alpha"].as<double>(), conf["p_null"].as<double>()),        infer_paj(conf.count("infer_alignment_hyperparameters") > 0), -      model(lets, num_letters), +      model(lets, vocab_size, num_letters),        kNULL(TD::Convert("NULL")) {      assert(lets[kNULL].size() == 0);    } @@ -77,7 +80,7 @@ struct Aligner {    vector<AlignedSentencePair>& corpus;    QuasiModel2 paj_model;    const bool infer_paj; -  PYPLexicalTranslation model; +  LexicalTranslationModel model;    const WordID kNULL;    void ResampleHyperparameters() { @@ -217,7 +220,8 @@ int main(int argc, char** argv) {    ExtractLetters(vocabf, &letters, NULL);    letters[TD::Convert("NULL")].clear(); -  Aligner aligner(letters, letset.size(), conf, &corpus); +  //Aligner<PYPLexicalTranslation> aligner(letters, vocabe.size(), letset.size(), conf, &corpus); +  Aligner<HPYPLexicalTranslation> aligner(letters, vocabe.size(), letset.size(), conf, &corpus);    aligner.InitializeRandom();    const unsigned samples = conf["samples"].as<unsigned>(); diff --git a/gi/pf/align-tl.cc b/gi/pf/align-tl.cc index cbe8c6c8..f6608f1d 100644 --- a/gi/pf/align-tl.cc +++ b/gi/pf/align-tl.cc @@ -58,7 +58,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {    }  } -shared_ptr<MT19937> prng; +boost::shared_ptr<MT19937> prng;  struct LexicalAlignment {    unsigned char src_index; diff --git a/gi/pf/bayes_lattice_score.cc b/gi/pf/bayes_lattice_score.cc new file mode 100644 index 00000000..70cb8dc2 --- /dev/null +++ b/gi/pf/bayes_lattice_score.cc @@ -0,0 +1,309 @@ +#include <iostream> +#include <queue> + +#include <boost/functional.hpp> +#include <boost/program_options.hpp> +#include <boost/program_options/variables_map.hpp> + +#include "inside_outside.h" +#include "hg.h" +#include "hg_io.h" +#include "bottom_up_parser.h" +#include "fdict.h" +#include "grammar.h" +#include "m.h" +#include "trule.h" +#include "tdict.h" +#include "filelib.h" +#include "dict.h" +#include "sampler.h" +#include "ccrp.h" +#include "ccrp_onetable.h" + +using namespace std; +using namespace tr1; +namespace po = boost::program_options; + +boost::shared_ptr<MT19937> prng; + +void InitCommandLine(int argc, char** argv, po::variables_map* conf) { +  po::options_description opts("Configuration options"); +  opts.add_options() +        ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") +        ("input,i",po::value<string>(),"Read parallel data from") +        ("random_seed,S",po::value<uint32_t>(), "Random seed"); +  po::options_description clo("Command line options"); +  clo.add_options() +        ("config", po::value<string>(), "Configuration file") +        ("help", "Print this help message and exit"); +  po::options_description dconfig_options, dcmdline_options; +  dconfig_options.add(opts); +  dcmdline_options.add(opts).add(clo); +   +  po::store(parse_command_line(argc, argv, dcmdline_options), *conf); +  if (conf->count("config")) { +    ifstream config((*conf)["config"].as<string>().c_str()); +    po::store(po::parse_config_file(config, dconfig_options), *conf); +  } +  po::notify(*conf); + +  if (conf->count("help") || (conf->count("input") == 0)) { +    cerr << dcmdline_options << endl; +    exit(1); +  } +} + +unsigned ReadCorpus(const string& filename, +                    vector<Lattice>* e, +                    set<WordID>* vocab_e) { +  e->clear(); +  vocab_e->clear(); +  ReadFile rf(filename); +  istream* in = rf.stream(); +  assert(*in); +  string line; +  unsigned toks = 0; +  while(*in) { +    getline(*in, line); +    if (line.empty() && !*in) break; +    e->push_back(Lattice()); +    Lattice& le = e->back(); +    LatticeTools::ConvertTextOrPLF(line, & le); +    for (unsigned i = 0; i < le.size(); ++i) +      for (unsigned j = 0; j < le[i].size(); ++j) +        vocab_e->insert(le[i][j].label); +    toks += le.size(); +  } +  return toks; +} + +struct BaseModel { +  explicit BaseModel(unsigned tc) : +      unif(1.0 / tc), p(prob_t::One()) {} +  prob_t prob(const TRule& r) const { +    return unif; +  } +  void increment(const TRule& r, MT19937* rng) { +    p *= prob(r); +  } +  void decrement(const TRule& r, MT19937* rng) { +    p /= prob(r); +  } +  prob_t Likelihood() const { +    return p; +  } +  const prob_t unif; +  prob_t p; +}; + +struct UnigramModel { +  explicit UnigramModel(unsigned tc) : base(tc), crp(1,1,1,1), glue(1,1,1,1) {} +  BaseModel base; +  CCRP<TRule> crp; +  CCRP<TRule> glue; + +  prob_t Prob(const TRule& r) const { +    if (r.Arity() != 0) { +      return glue.prob(r, prob_t(0.5)); +    } +    return crp.prob(r, base.prob(r)); +  } + +  int Increment(const TRule& r, MT19937* rng) { +    if (r.Arity() != 0) { +      glue.increment(r, 0.5, rng); +      return 0; +    } else { +      if (crp.increment(r, base.prob(r), rng)) { +        base.increment(r, rng); +        return 1; +      } +      return 0; +    } +  } + +  int Decrement(const TRule& r, MT19937* rng) { +    if (r.Arity() != 0) { +      glue.decrement(r, rng); +      return 0; +    } else { +      if (crp.decrement(r, rng)) { +        base.decrement(r, rng); +        return -1; +      } +      return 0; +    } +  } + +  prob_t Likelihood() const { +    prob_t p; +    p.logeq(crp.log_crp_prob() + glue.log_crp_prob()); +    p *= base.Likelihood(); +    return p; +  } + +  void ResampleHyperparameters(MT19937* rng) { +    crp.resample_hyperparameters(rng); +    glue.resample_hyperparameters(rng); +    cerr << " d=" << crp.discount() << ", s=" << crp.strength() << "\t STOP d=" << glue.discount() << ", s=" << glue.strength() << endl; +  } +}; + +UnigramModel* plm; + +void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv) { +  vector<prob_t> node_probs; +  Inside<prob_t, EdgeProb>(hg, &node_probs); +  queue<unsigned> q; +  q.push(hg.nodes_.size() - 2); +  while(!q.empty()) { +    unsigned cur_node_id = q.front(); +//    cerr << "NODE=" << cur_node_id << endl; +    q.pop(); +    const Hypergraph::Node& node = hg.nodes_[cur_node_id]; +    const unsigned num_in_edges = node.in_edges_.size(); +    unsigned sampled_edge = 0; +    if (num_in_edges == 1) { +      sampled_edge = node.in_edges_[0]; +    } else { +      //prob_t z; +      assert(num_in_edges > 1); +      SampleSet<prob_t> ss; +      for (unsigned j = 0; j < num_in_edges; ++j) { +        const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; +        prob_t p = edge.edge_prob_; +        for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) +          p *= node_probs[edge.tail_nodes_[k]]; +        ss.add(p); +//        cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl; +        //z += p; +      } +//      for (unsigned j = 0; j < num_in_edges; ++j) { +//        const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; +//        cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl; +//      } +//      cerr << " --- \n"; +      sampled_edge = node.in_edges_[rng->SelectSample(ss)]; +    } +    sampled_deriv->push_back(sampled_edge); +    const Hypergraph::Edge& edge = hg.edges_[sampled_edge]; +    for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) { +      q.push(edge.tail_nodes_[j]); +    } +  } +//  for (unsigned i = 0; i < sampled_deriv->size(); ++i) { +//    cerr << *hg.edges_[(*sampled_deriv)[i]].rule_ << endl; +//  } +} + +void IncrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, UnigramModel* plm, MT19937* rng) { +  for (unsigned i = 0; i < d.size(); ++i) +    plm->Increment(*hg.edges_[d[i]].rule_, rng); +} + +void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, UnigramModel* plm, MT19937* rng) { +  for (unsigned i = 0; i < d.size(); ++i) +    plm->Decrement(*hg.edges_[d[i]].rule_, rng); +} + +prob_t TotalProb(const Hypergraph& hg) { +  return Inside<prob_t, EdgeProb>(hg); +} + +void IncrementLatticePath(const Hypergraph& hg, const vector<unsigned>& d, Lattice* pl) { +  Lattice& lat = *pl; +  for (int i = 0; i < d.size(); ++i) { +    const Hypergraph::Edge& edge = hg.edges_[d[i]]; +    if (edge.rule_->Arity() != 0) continue; +    WordID sym = edge.rule_->e_[0]; +    vector<LatticeArc>& las = lat[edge.i_]; +    int dist = edge.j_ - edge.i_; +    assert(dist > 0); +    for (int j = 0; j < las.size(); ++j) { +      if (las[j].dist2next == dist && +          las[j].label == sym) { +        las[j].cost += 1; +      } +    } +  } +} + +int main(int argc, char** argv) { +  po::variables_map conf; + +  InitCommandLine(argc, argv, &conf); +  vector<GrammarPtr> grammars(2); +  grammars[0].reset(new GlueGrammar("S","X")); +  const unsigned samples = conf["samples"].as<unsigned>(); + +  if (conf.count("random_seed")) +    prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); +  else +    prng.reset(new MT19937); +  MT19937& rng = *prng; +  vector<Lattice> corpuse; +  set<WordID> vocabe; +  cerr << "Reading corpus...\n"; +  const unsigned toks = ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe); +  cerr << "E-corpus size: " << corpuse.size() << " lattices\t (" << vocabe.size() << " word types)\n"; +  UnigramModel lm(vocabe.size()); +  vector<Hypergraph> hgs(corpuse.size()); +  vector<vector<unsigned> > derivs(corpuse.size()); +  for (int i = 0; i < corpuse.size(); ++i) { +    grammars[1].reset(new PassThroughGrammar(corpuse[i], "X")); +    ExhaustiveBottomUpParser parser("S", grammars); +    bool res = parser.Parse(corpuse[i], &hgs[i]);  // exhaustive parse +    assert(res); +  } + +  double csamples = 0; +  for (int SS=0; SS < samples; ++SS) { +    const bool is_last = ((samples - 1) == SS); +    prob_t dlh = prob_t::One(); +    bool record_sample = (SS > (samples * 1 / 3) && (SS % 5 == 3)); +    if (record_sample) csamples++; +    for (int ci = 0; ci < corpuse.size(); ++ci) { +      Lattice& lat = corpuse[ci]; +      Hypergraph& hg = hgs[ci]; +      vector<unsigned>& d = derivs[ci]; +      if (!is_last) DecrementDerivation(hg, d, &lm, &rng); +      for (unsigned i = 0; i < hg.edges_.size(); ++i) { +        TRule& r = *hg.edges_[i].rule_; +        if (r.Arity() != 0) +          hg.edges_[i].edge_prob_ = prob_t::One(); +        else +          hg.edges_[i].edge_prob_ = lm.Prob(r); +      } +      if (!is_last) { +        d.clear(); +        SampleDerivation(hg, &rng, &d); +        IncrementDerivation(hg, derivs[ci], &lm, &rng); +      } else { +        prob_t p = TotalProb(hg); +        dlh *= p; +        cerr << " p(sentence) = " << log(p) << "\t" << log(dlh) << endl; +      } +      if (record_sample) IncrementLatticePath(hg, derivs[ci], &lat); +    } +    double llh = log(lm.Likelihood()); +    cerr << "LLH=" << llh << "\tENTROPY=" << (-llh / log(2) / toks) << "\tPPL=" << pow(2, -llh / log(2) / toks) << endl; +    if (SS % 10 == 9) lm.ResampleHyperparameters(&rng); +    if (is_last) { +      double z = log(dlh); +      cerr << "TOTAL_PROB=" << z << "\tENTROPY=" << (-z / log(2) / toks) << "\tPPL=" << pow(2, -z / log(2) / toks) << endl; +    } +  } +  cerr << lm.crp << endl; +  cerr << lm.glue << endl; +  for (int i = 0; i < corpuse.size(); ++i) { +    for (int j = 0; j < corpuse[i].size(); ++j) +      for (int k = 0; k < corpuse[i][j].size(); ++k) { +        corpuse[i][j][k].cost /= csamples; +        corpuse[i][j][k].cost += 1e-3; +        corpuse[i][j][k].cost = log(corpuse[i][j][k].cost); +      } +    cout << HypergraphIO::AsPLF(corpuse[i]) << endl; +  } +  return 0; +} + diff --git a/gi/pf/brat.cc b/gi/pf/brat.cc index c2c52760..832f22cf 100644 --- a/gi/pf/brat.cc +++ b/gi/pf/brat.cc @@ -489,7 +489,7 @@ int main(int argc, char** argv) {      cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";      return 1;    } -  shared_ptr<MT19937> prng; +  boost::shared_ptr<MT19937> prng;    if (conf.count("random_seed"))      prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));    else diff --git a/gi/pf/cfg_wfst_composer.cc b/gi/pf/cfg_wfst_composer.cc index a31b5be8..20520c81 100644 --- a/gi/pf/cfg_wfst_composer.cc +++ b/gi/pf/cfg_wfst_composer.cc @@ -16,7 +16,6 @@  #include "tdict.h"  #include "hg.h" -using boost::shared_ptr;  namespace po = boost::program_options;  using namespace std;  using namespace std::tr1; @@ -114,7 +113,7 @@ struct Edge {    const Edge* const active_parent;    // back pointer, NULL for PREDICT items    const Edge* const passive_parent;   // back pointer, NULL for SCAN and PREDICT items    TRulePtr tps;   // translations -  shared_ptr<SparseVector<double> > features; // features from CFG rule +  boost::shared_ptr<SparseVector<double> > features; // features from CFG rule    bool IsPassive() const {      // when a rule is completed, this value will be set diff --git a/gi/pf/condnaive.cc b/gi/pf/condnaive.cc index 3ea88016..419731ac 100644 --- a/gi/pf/condnaive.cc +++ b/gi/pf/condnaive.cc @@ -55,7 +55,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {    }  } -shared_ptr<MT19937> prng; +boost::shared_ptr<MT19937> prng;  struct ModelAndData {    explicit ModelAndData(ConditionalParallelSegementationModel<PhraseConditionalBase>& m, const vector<vector<int> >& ce, const vector<vector<int> >& cf, const set<int>& ve, const set<int>& vf) : diff --git a/gi/pf/dpnaive.cc b/gi/pf/dpnaive.cc index 469dff5c..75ccad72 100644 --- a/gi/pf/dpnaive.cc +++ b/gi/pf/dpnaive.cc @@ -55,7 +55,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) {    }  } -shared_ptr<MT19937> prng; +boost::shared_ptr<MT19937> prng;  template <typename Base>  struct ModelAndData { diff --git a/gi/pf/hpyp_tm.cc b/gi/pf/hpyp_tm.cc new file mode 100644 index 00000000..784f9958 --- /dev/null +++ b/gi/pf/hpyp_tm.cc @@ -0,0 +1,133 @@ +#include "hpyp_tm.h" + +#include <tr1/unordered_map> +#include <iostream> +#include <queue> + +#include "tdict.h" +#include "ccrp.h" +#include "pyp_word_model.h" +#include "tied_resampler.h" + +using namespace std; +using namespace std::tr1; + +struct FreqBinner { +  FreqBinner(const std::string& fname) { fd_.Load(fname); } +  unsigned NumberOfBins() const { return fd_.Max() + 1; } +  unsigned Bin(const WordID& w) const { return fd_.LookUp(w); } +  FreqDict<unsigned> fd_; +}; + +template <typename Base, class Binner = FreqBinner> +struct ConditionalPYPWordModel { +  ConditionalPYPWordModel(Base* b, const Binner* bnr = NULL) : +      base(*b), +      binner(bnr), +      btr(binner ? binner->NumberOfBins() + 1u : 2u) {} + +  void Summary() const { +    cerr << "Number of conditioning contexts: " << r.size() << endl; +    for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { +      cerr << TD::Convert(it->first) << "   \tPYP(d=" << it->second.discount() << ",s=" << it->second.strength() << ") --------------------------" << endl; +      for (CCRP<vector<WordID> >::const_iterator i2 = it->second.begin(); i2 != it->second.end(); ++i2) +        cerr << "   " << i2->second.total_dish_count_ << '\t' << TD::GetString(i2->first) << endl; +    } +  } + +  void ResampleHyperparameters(MT19937* rng) { +    btr.ResampleHyperparameters(rng); +  }  + +  prob_t Prob(const WordID src, const vector<WordID>& trglets) const { +    RuleModelHash::const_iterator it = r.find(src); +    if (it == r.end()) { +      return base(trglets); +    } else { +      return it->second.prob(trglets, base(trglets)); +    } +  } + +  void Increment(const WordID src, const vector<WordID>& trglets, MT19937* rng) { +    RuleModelHash::iterator it = r.find(src); +    if (it == r.end()) { +      it = r.insert(make_pair(src, CCRP<vector<WordID> >(0.5,1.0))).first; +      static const WordID kNULL = TD::Convert("NULL"); +      unsigned bin = (src == kNULL ? 0 : 1); +      if (binner && bin) { bin = binner->Bin(src) + 1; } +      btr.Add(bin, &it->second); +    } +    if (it->second.increment(trglets, base(trglets), rng)) +      base.Increment(trglets, rng); +  } + +  void Decrement(const WordID src, const vector<WordID>& trglets, MT19937* rng) { +    RuleModelHash::iterator it = r.find(src); +    assert(it != r.end()); +    if (it->second.decrement(trglets, rng)) { +      base.Decrement(trglets, rng); +    } +  } + +  prob_t Likelihood() const { +    prob_t p = prob_t::One(); +    for (RuleModelHash::const_iterator it = r.begin(); it != r.end(); ++it) { +      prob_t q; q.logeq(it->second.log_crp_prob()); +      p *= q; +    } +    return p; +  } + +  unsigned UniqueConditioningContexts() const { +    return r.size(); +  } + +  // TODO tie PYP hyperparameters based on source word frequency bins +  Base& base; +  const Binner* binner; +  BinTiedResampler<CCRP<vector<WordID> > > btr; +  typedef unordered_map<WordID, CCRP<vector<WordID> > > RuleModelHash; +  RuleModelHash r; +}; + +HPYPLexicalTranslation::HPYPLexicalTranslation(const vector<vector<WordID> >& lets, +                                               const unsigned vocab_size, +                                               const unsigned num_letters) : +    letters(lets), +    base(vocab_size, num_letters, 5), +    up0(new PYPWordModel<PoissonUniformWordModel>(&base)), +    tmodel(new ConditionalPYPWordModel<PYPWordModel<PoissonUniformWordModel> >(up0, new FreqBinner("10k.freq"))), +    kX(-TD::Convert("X")) {} + +void HPYPLexicalTranslation::Summary() const { +  tmodel->Summary(); +  up0->Summary(); +} + +prob_t HPYPLexicalTranslation::Likelihood() const { +  prob_t p = up0->Likelihood(); +  p *= tmodel->Likelihood(); +  return p; +} + +void HPYPLexicalTranslation::ResampleHyperparameters(MT19937* rng) { +  tmodel->ResampleHyperparameters(rng); +  up0->ResampleHyperparameters(rng); +} + +unsigned HPYPLexicalTranslation::UniqueConditioningContexts() const { +  return tmodel->UniqueConditioningContexts(); +} + +prob_t HPYPLexicalTranslation::Prob(WordID src, WordID trg) const { +  return tmodel->Prob(src, letters[trg]); +} + +void HPYPLexicalTranslation::Increment(WordID src, WordID trg, MT19937* rng) { +  tmodel->Increment(src, letters[trg], rng); +} + +void HPYPLexicalTranslation::Decrement(WordID src, WordID trg, MT19937* rng) { +  tmodel->Decrement(src, letters[trg], rng); +} + diff --git a/gi/pf/hpyp_tm.h b/gi/pf/hpyp_tm.h new file mode 100644 index 00000000..af3215ba --- /dev/null +++ b/gi/pf/hpyp_tm.h @@ -0,0 +1,38 @@ +#ifndef HPYP_LEX_TRANS +#define HPYP_LEX_TRANS + +#include <vector> +#include "wordid.h" +#include "prob.h" +#include "sampler.h" +#include "freqdict.h" +#include "poisson_uniform_word_model.h" + +struct FreqBinner; +template <class B> struct PYPWordModel; +template <typename T, class B> struct ConditionalPYPWordModel; + +struct HPYPLexicalTranslation { +  explicit HPYPLexicalTranslation(const std::vector<std::vector<WordID> >& lets, +                                 const unsigned vocab_size, +                                 const unsigned num_letters); + +  prob_t Likelihood() const; + +  void ResampleHyperparameters(MT19937* rng); +  prob_t Prob(WordID src, WordID trg) const;  // return p(trg | src) +  void Summary() const; +  void Increment(WordID src, WordID trg, MT19937* rng); +  void Decrement(WordID src, WordID trg, MT19937* rng); +  unsigned UniqueConditioningContexts() const; + + private: +  const std::vector<std::vector<WordID> >& letters;   // spelling dictionary +  PoissonUniformWordModel base;  // "generator" of English types +  PYPWordModel<PoissonUniformWordModel>* up0;  // model English lexicon +  ConditionalPYPWordModel<PYPWordModel<PoissonUniformWordModel>, FreqBinner>* tmodel;  // translation distributions +                      // (model English word | French word) +  const WordID kX; +}; + +#endif diff --git a/gi/pf/itg.cc b/gi/pf/itg.cc index a38fe672..29ec3860 100644 --- a/gi/pf/itg.cc +++ b/gi/pf/itg.cc @@ -231,7 +231,7 @@ int main(int argc, char** argv) {      cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";      return 1;    } -  shared_ptr<MT19937> prng; +  boost::shared_ptr<MT19937> prng;    if (conf.count("random_seed"))      prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));    else diff --git a/gi/pf/learn_cfg.cc b/gi/pf/learn_cfg.cc index ed1772bf..44eaa162 100644 --- a/gi/pf/learn_cfg.cc +++ b/gi/pf/learn_cfg.cc @@ -24,7 +24,7 @@ using namespace std;  using namespace tr1;  namespace po = boost::program_options; -shared_ptr<MT19937> prng; +boost::shared_ptr<MT19937> prng;  vector<int> nt_vocab;  vector<int> nt_id_to_index;  static unsigned kMAX_RULE_SIZE = 0; diff --git a/gi/pf/mh_test.cc b/gi/pf/mh_test.cc new file mode 100644 index 00000000..296e7285 --- /dev/null +++ b/gi/pf/mh_test.cc @@ -0,0 +1,148 @@ +#include "ccrp.h" + +#include <vector> +#include <iostream> + +#include "tdict.h" +#include "transliterations.h" + +using namespace std; + +MT19937 rng; + +static bool verbose = false; + +struct Model { + +  Model() : bp(), base(0.2, 0.6) , ccrps(5, CCRP<int>(0.8, 0.5)) {} + +  double p0(int x) const { +    assert(x > 0); +    assert(x < 5); +    return 1.0/4.0; +  } + +  double llh() const { +    double lh = bp + base.log_crp_prob(); +    for (int ctx = 1; ctx < 5; ++ctx) +      lh += ccrps[ctx].log_crp_prob(); +    return lh; +  } + +  double prob(int ctx, int x) const { +    assert(ctx > 0 && ctx < 5); +    return ccrps[ctx].prob(x, base.prob(x, p0(x))); +  } + +  void increment(int ctx, int x) { +    assert(ctx > 0 && ctx < 5); +    if (ccrps[ctx].increment(x, base.prob(x, p0(x)), &rng)) { +      if (base.increment(x, p0(x), &rng)) { +        bp += log(1.0 / 4.0); +      } +    } +  } + +  // this is just a biased estimate +  double est_base_prob(int x) { +    return (x + 1) * x / 40.0; +  } + +  void increment_is(int ctx, int x) { +    assert(ctx > 0 && ctx < 5); +    SampleSet<double> ss; +    const int PARTICLES = 25; +    vector<CCRP<int> > s1s(PARTICLES, CCRP<int>(0.5,0.5)); +    vector<CCRP<int> > sbs(PARTICLES, CCRP<int>(0.5,0.5)); +    vector<double> sp0s(PARTICLES); + +    CCRP<int> s1 = ccrps[ctx]; +    CCRP<int> sb = base; +    double sp0 = bp; +    for (int pp = 0; pp < PARTICLES; ++pp) { +      if (pp > 0) { +        ccrps[ctx] = s1; +        base = sb; +        bp = sp0; +      } + +      double q = 1; +      double gamma = 1; +      double est_p = est_base_prob(x); +      //base.prob(x, p0(x)) + rng.next() * 0.1; +      if (ccrps[ctx].increment(x, est_p, &rng, &q)) { +        gamma = q * base.prob(x, p0(x)); +        q *= est_p; +        if (verbose) cerr << "(DP-base draw) "; +        double qq = -1; +        if (base.increment(x, p0(x), &rng, &qq)) { +          if (verbose) cerr << "(G0 draw) "; +          bp += log(p0(x)); +          qq *= p0(x); +        } +      } else { gamma = q; } +      double w = gamma / q; +      if (verbose) +        cerr << "gamma=" << gamma << " q=" << q << "\tw=" << w << endl; +      ss.add(w); +      s1s[pp] = ccrps[ctx]; +      sbs[pp] = base; +      sp0s[pp] = bp; +    } +    int ps = rng.SelectSample(ss); +    ccrps[ctx] = s1s[ps]; +    base = sbs[ps]; +    bp = sp0s[ps]; +    if (verbose) { +      cerr << "SELECTED: " << ps << endl; +      static int cc = 0; cc++; if (cc ==10) exit(1); +    } +  } + +  void decrement(int ctx, int x) { +    assert(ctx > 0 && ctx < 5); +    if (ccrps[ctx].decrement(x, &rng)) { +      if (base.decrement(x, &rng)) { +        bp -= log(p0(x)); +      } +    } +  } + +  double bp; +  CCRP<int> base; +  vector<CCRP<int> > ccrps; + +}; + +int main(int argc, char** argv) { +  if (argc > 1) { verbose = true; } +  vector<int> counts(15, 0); +  vector<int> tcounts(15, 0); +  int points[] = {1,2, 2,2, 3,2, 4,1, 3, 4, 3, 3, 2, 3, 4, 1, 4, 1, 3, 2, 1, 3, 1, 4, 0, 0}; +  double tlh = 0; +  double tt = 0; +  for (int n = 0; n < 1000; ++n) { +    if (n % 10 == 0) cerr << '.'; +    if ((n+1) % 400 == 0) cerr << " [" << (n+1) << "]\n"; +    Model m; +    for (int *x = points; *x; x += 2) +      m.increment(x[0], x[1]); + +    for (int j = 0; j < 24; ++j) { +      for (int *x = points; *x; x += 2) { +        if (rng.next() < 0.8) { +          m.decrement(x[0], x[1]); +          m.increment_is(x[0], x[1]); +        } +      } +    } +    counts[m.base.num_customers()]++; +    tcounts[m.base.num_tables()]++; +    tlh += m.llh(); +    tt += 1.0; +  } +  cerr << "mean LLH = " << (tlh / tt) << endl; +  for (int i = 0; i < 15; ++i) +    cerr << i << ": " << (counts[i] / tt) << "\t" << (tcounts[i] / tt) << endl; +} + diff --git a/gi/pf/pf_test.cc b/gi/pf/pf_test.cc new file mode 100644 index 00000000..296e7285 --- /dev/null +++ b/gi/pf/pf_test.cc @@ -0,0 +1,148 @@ +#include "ccrp.h" + +#include <vector> +#include <iostream> + +#include "tdict.h" +#include "transliterations.h" + +using namespace std; + +MT19937 rng; + +static bool verbose = false; + +struct Model { + +  Model() : bp(), base(0.2, 0.6) , ccrps(5, CCRP<int>(0.8, 0.5)) {} + +  double p0(int x) const { +    assert(x > 0); +    assert(x < 5); +    return 1.0/4.0; +  } + +  double llh() const { +    double lh = bp + base.log_crp_prob(); +    for (int ctx = 1; ctx < 5; ++ctx) +      lh += ccrps[ctx].log_crp_prob(); +    return lh; +  } + +  double prob(int ctx, int x) const { +    assert(ctx > 0 && ctx < 5); +    return ccrps[ctx].prob(x, base.prob(x, p0(x))); +  } + +  void increment(int ctx, int x) { +    assert(ctx > 0 && ctx < 5); +    if (ccrps[ctx].increment(x, base.prob(x, p0(x)), &rng)) { +      if (base.increment(x, p0(x), &rng)) { +        bp += log(1.0 / 4.0); +      } +    } +  } + +  // this is just a biased estimate +  double est_base_prob(int x) { +    return (x + 1) * x / 40.0; +  } + +  void increment_is(int ctx, int x) { +    assert(ctx > 0 && ctx < 5); +    SampleSet<double> ss; +    const int PARTICLES = 25; +    vector<CCRP<int> > s1s(PARTICLES, CCRP<int>(0.5,0.5)); +    vector<CCRP<int> > sbs(PARTICLES, CCRP<int>(0.5,0.5)); +    vector<double> sp0s(PARTICLES); + +    CCRP<int> s1 = ccrps[ctx]; +    CCRP<int> sb = base; +    double sp0 = bp; +    for (int pp = 0; pp < PARTICLES; ++pp) { +      if (pp > 0) { +        ccrps[ctx] = s1; +        base = sb; +        bp = sp0; +      } + +      double q = 1; +      double gamma = 1; +      double est_p = est_base_prob(x); +      //base.prob(x, p0(x)) + rng.next() * 0.1; +      if (ccrps[ctx].increment(x, est_p, &rng, &q)) { +        gamma = q * base.prob(x, p0(x)); +        q *= est_p; +        if (verbose) cerr << "(DP-base draw) "; +        double qq = -1; +        if (base.increment(x, p0(x), &rng, &qq)) { +          if (verbose) cerr << "(G0 draw) "; +          bp += log(p0(x)); +          qq *= p0(x); +        } +      } else { gamma = q; } +      double w = gamma / q; +      if (verbose) +        cerr << "gamma=" << gamma << " q=" << q << "\tw=" << w << endl; +      ss.add(w); +      s1s[pp] = ccrps[ctx]; +      sbs[pp] = base; +      sp0s[pp] = bp; +    } +    int ps = rng.SelectSample(ss); +    ccrps[ctx] = s1s[ps]; +    base = sbs[ps]; +    bp = sp0s[ps]; +    if (verbose) { +      cerr << "SELECTED: " << ps << endl; +      static int cc = 0; cc++; if (cc ==10) exit(1); +    } +  } + +  void decrement(int ctx, int x) { +    assert(ctx > 0 && ctx < 5); +    if (ccrps[ctx].decrement(x, &rng)) { +      if (base.decrement(x, &rng)) { +        bp -= log(p0(x)); +      } +    } +  } + +  double bp; +  CCRP<int> base; +  vector<CCRP<int> > ccrps; + +}; + +int main(int argc, char** argv) { +  if (argc > 1) { verbose = true; } +  vector<int> counts(15, 0); +  vector<int> tcounts(15, 0); +  int points[] = {1,2, 2,2, 3,2, 4,1, 3, 4, 3, 3, 2, 3, 4, 1, 4, 1, 3, 2, 1, 3, 1, 4, 0, 0}; +  double tlh = 0; +  double tt = 0; +  for (int n = 0; n < 1000; ++n) { +    if (n % 10 == 0) cerr << '.'; +    if ((n+1) % 400 == 0) cerr << " [" << (n+1) << "]\n"; +    Model m; +    for (int *x = points; *x; x += 2) +      m.increment(x[0], x[1]); + +    for (int j = 0; j < 24; ++j) { +      for (int *x = points; *x; x += 2) { +        if (rng.next() < 0.8) { +          m.decrement(x[0], x[1]); +          m.increment_is(x[0], x[1]); +        } +      } +    } +    counts[m.base.num_customers()]++; +    tcounts[m.base.num_tables()]++; +    tlh += m.llh(); +    tt += 1.0; +  } +  cerr << "mean LLH = " << (tlh / tt) << endl; +  for (int i = 0; i < 15; ++i) +    cerr << i << ": " << (counts[i] / tt) << "\t" << (tcounts[i] / tt) << endl; +} + diff --git a/gi/pf/pfbrat.cc b/gi/pf/pfbrat.cc index c2c52760..832f22cf 100644 --- a/gi/pf/pfbrat.cc +++ b/gi/pf/pfbrat.cc @@ -489,7 +489,7 @@ int main(int argc, char** argv) {      cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";      return 1;    } -  shared_ptr<MT19937> prng; +  boost::shared_ptr<MT19937> prng;    if (conf.count("random_seed"))      prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));    else diff --git a/gi/pf/pfdist.cc b/gi/pf/pfdist.cc index 3d578db2..a3e46064 100644 --- a/gi/pf/pfdist.cc +++ b/gi/pf/pfdist.cc @@ -23,7 +23,7 @@ using namespace std;  using namespace tr1;  namespace po = boost::program_options; -shared_ptr<MT19937> prng; +boost::shared_ptr<MT19937> prng;  void InitCommandLine(int argc, char** argv, po::variables_map* conf) {    po::options_description opts("Configuration options"); diff --git a/gi/pf/pfnaive.cc b/gi/pf/pfnaive.cc index e1a53f5c..958ec4e2 100644 --- a/gi/pf/pfnaive.cc +++ b/gi/pf/pfnaive.cc @@ -25,7 +25,7 @@ using namespace std;  using namespace tr1;  namespace po = boost::program_options; -shared_ptr<MT19937> prng; +boost::shared_ptr<MT19937> prng;  void InitCommandLine(int argc, char** argv, po::variables_map* conf) {    po::options_description opts("Configuration options"); diff --git a/gi/pf/poisson_uniform_word_model.h b/gi/pf/poisson_uniform_word_model.h new file mode 100644 index 00000000..76204a0e --- /dev/null +++ b/gi/pf/poisson_uniform_word_model.h @@ -0,0 +1,50 @@ +#ifndef _POISSON_UNIFORM_WORD_MODEL_H_ +#define _POISSON_UNIFORM_WORD_MODEL_H_ + +#include <cmath> +#include <vector> +#include "prob.h" +#include "m.h" + +// len ~ Poisson(lambda) +//   for (1..len) +//     e_i ~ Uniform({Vocabulary}) +struct PoissonUniformWordModel { +  explicit PoissonUniformWordModel(const unsigned vocab_size, +                                   const unsigned alphabet_size, +                                   const double mean_len = 5) : +    lh(prob_t::One()), +    v0(-std::log(vocab_size)), +    u0(-std::log(alphabet_size)), +    mean_length(mean_len) {} + +  void ResampleHyperparameters(MT19937*) {} + +  inline prob_t operator()(const std::vector<WordID>& s) const { +    prob_t p; +    p.logeq(Md::log_poisson(s.size(), mean_length) + s.size() * u0); +    //p.logeq(v0); +    return p; +  } + +  inline void Increment(const std::vector<WordID>& w, MT19937*) { +    lh *= (*this)(w); +  } + +  inline void Decrement(const std::vector<WordID>& w, MT19937 *) { +    lh /= (*this)(w); +  } + +  inline prob_t Likelihood() const { return lh; } + +  void Summary() const {} + + private: + +  prob_t lh;  // keeps track of the draws from the base distribution +  const double v0;  // uniform log prob of generating a word +  const double u0;  // uniform log prob of generating a letter +  const double mean_length;  // mean length of a word in the base distribution +}; + +#endif diff --git a/gi/pf/pyp_lm.cc b/gi/pf/pyp_lm.cc index 91029688..e2b67e17 100644 --- a/gi/pf/pyp_lm.cc +++ b/gi/pf/pyp_lm.cc @@ -25,7 +25,7 @@ using namespace std;  using namespace tr1;  namespace po = boost::program_options; -shared_ptr<MT19937> prng; +boost::shared_ptr<MT19937> prng;  void InitCommandLine(int argc, char** argv, po::variables_map* conf) {    po::options_description opts("Configuration options"); diff --git a/gi/pf/pyp_tm.cc b/gi/pf/pyp_tm.cc index e21f0267..6bc8a5bf 100644 --- a/gi/pf/pyp_tm.cc +++ b/gi/pf/pyp_tm.cc @@ -91,26 +91,23 @@ struct ConditionalPYPWordModel {  };  PYPLexicalTranslation::PYPLexicalTranslation(const vector<vector<WordID> >& lets, +                                             const unsigned vocab_size,                                               const unsigned num_letters) :      letters(lets), -    up0(new PYPWordModel(num_letters)), -    tmodel(new ConditionalPYPWordModel<PYPWordModel>(up0, new FreqBinner("10k.freq"))), +    base(vocab_size, num_letters, 5), +    tmodel(new ConditionalPYPWordModel<PoissonUniformWordModel>(&base, new FreqBinner("10k.freq"))),      kX(-TD::Convert("X")) {}  void PYPLexicalTranslation::Summary() const {    tmodel->Summary(); -  up0->Summary();  }  prob_t PYPLexicalTranslation::Likelihood() const { -  prob_t p = up0->Likelihood(); -  p *= tmodel->Likelihood(); -  return p; +  return tmodel->Likelihood() * base.Likelihood();  }  void PYPLexicalTranslation::ResampleHyperparameters(MT19937* rng) {    tmodel->ResampleHyperparameters(rng); -  up0->ResampleHyperparameters(rng);  }  unsigned PYPLexicalTranslation::UniqueConditioningContexts() const { diff --git a/gi/pf/pyp_tm.h b/gi/pf/pyp_tm.h index 63e7c96d..2b076a25 100644 --- a/gi/pf/pyp_tm.h +++ b/gi/pf/pyp_tm.h @@ -6,13 +6,14 @@  #include "prob.h"  #include "sampler.h"  #include "freqdict.h" +#include "poisson_uniform_word_model.h"  struct FreqBinner; -struct PYPWordModel;  template <typename T, class B> struct ConditionalPYPWordModel;  struct PYPLexicalTranslation {    explicit PYPLexicalTranslation(const std::vector<std::vector<WordID> >& lets, +                                 const unsigned vocab_size,                                   const unsigned num_letters);    prob_t Likelihood() const; @@ -26,8 +27,8 @@ struct PYPLexicalTranslation {   private:    const std::vector<std::vector<WordID> >& letters;   // spelling dictionary -  PYPWordModel* up0;  // base distribuction (model English word) -  ConditionalPYPWordModel<PYPWordModel, FreqBinner>* tmodel;  // translation distributions +  PoissonUniformWordModel base;  // "generator" of English types +  ConditionalPYPWordModel<PoissonUniformWordModel, FreqBinner>* tmodel;  // translation distributions                        // (model English word | French word)    const WordID kX;  }; diff --git a/gi/pf/pyp_word_model.cc b/gi/pf/pyp_word_model.cc deleted file mode 100644 index 12df4abf..00000000 --- a/gi/pf/pyp_word_model.cc +++ /dev/null @@ -1,20 +0,0 @@ -#include "pyp_word_model.h" - -#include <iostream> - -using namespace std; - -void PYPWordModel::ResampleHyperparameters(MT19937* rng) { -  r.resample_hyperparameters(rng); -  cerr << " PYPWordModel(d=" << r.discount() << ",s=" << r.strength() << ")\n"; -} - -void PYPWordModel::Summary() const { -  cerr << "PYPWordModel: generations=" << r.num_customers() -       << " PYP(d=" << r.discount() << ",s=" << r.strength() << ')' << endl; -  for (CCRP<vector<WordID> >::const_iterator it = r.begin(); it != r.end(); ++it) -    cerr << "   " << it->second.total_dish_count_ -              << " (on " << it->second.table_counts_.size() << " tables) " -              << TD::GetString(it->first) << endl; -} - diff --git a/gi/pf/pyp_word_model.h b/gi/pf/pyp_word_model.h index ff366865..224a9034 100644 --- a/gi/pf/pyp_word_model.h +++ b/gi/pf/pyp_word_model.h @@ -11,48 +11,52 @@  #include "os_phrase.h"  // PYP(d,s,poisson-uniform) represented as a CRP +template <class Base>  struct PYPWordModel { -  explicit PYPWordModel(const unsigned vocab_e_size, const double mean_len = 5) : -      base(prob_t::One()), r(1,1,1,1,0.66,50.0), u0(-std::log(vocab_e_size)), mean_length(mean_len) {} - -  void ResampleHyperparameters(MT19937* rng); +  explicit PYPWordModel(Base* b) : +      base(*b), +      r(1,1,1,1,0.66,50.0) +    {} + +  void ResampleHyperparameters(MT19937* rng) { +    r.resample_hyperparameters(rng); +    std::cerr << " PYPWordModel(d=" << r.discount() << ",s=" << r.strength() << ")\n"; +  }    inline prob_t operator()(const std::vector<WordID>& s) const { -    return r.prob(s, p0(s)); +    return r.prob(s, base(s));    }    inline void Increment(const std::vector<WordID>& s, MT19937* rng) { -    if (r.increment(s, p0(s), rng)) -      base *= p0(s); +    if (r.increment(s, base(s), rng)) +      base.Increment(s, rng);    }    inline void Decrement(const std::vector<WordID>& s, MT19937 *rng) {      if (r.decrement(s, rng)) -      base /= p0(s); +      base.Decrement(s, rng);    }    inline prob_t Likelihood() const {      prob_t p; p.logeq(r.log_crp_prob()); -    p *= base; +    p *= base.Likelihood();      return p;    } -  void Summary() const; - - private: -  inline double logp0(const std::vector<WordID>& s) const { -    return Md::log_poisson(s.size(), mean_length) + s.size() * u0; +  void Summary() const { +    std::cerr << "PYPWordModel: generations=" << r.num_customers() +         << " PYP(d=" << r.discount() << ",s=" << r.strength() << ')' << std::endl; +    for (typename CCRP<std::vector<WordID> >::const_iterator it = r.begin(); it != r.end(); ++it) { +      std::cerr << "   " << it->second.total_dish_count_ +                << " (on " << it->second.table_counts_.size() << " tables) " +                << TD::GetString(it->first) << std::endl; +    }    } -  inline prob_t p0(const std::vector<WordID>& s) const { -    prob_t p; p.logeq(logp0(s)); -    return p; -  } + private: -  prob_t base;  // keeps track of the draws from the base distribution +  Base& base;  // keeps track of the draws from the base distribution    CCRP<std::vector<WordID> > r; -  const double u0;  // uniform log prob of generating a letter -  const double mean_length;  // mean length of a word in the base distribution  };  #endif diff --git a/gi/pf/quasi_model2.h b/gi/pf/quasi_model2.h index 588c8f84..4075affe 100644 --- a/gi/pf/quasi_model2.h +++ b/gi/pf/quasi_model2.h @@ -9,6 +9,7 @@  #include "array2d.h"  #include "slice_sampler.h"  #include "m.h" +#include "have_64_bits.h"  struct AlignmentObservation {    AlignmentObservation() : src_len(), trg_len(), j(), a_j() {} @@ -20,13 +21,23 @@ struct AlignmentObservation {    unsigned short a_j;  }; +#ifdef HAVE_64_BITS  inline size_t hash_value(const AlignmentObservation& o) {    return reinterpret_cast<const size_t&>(o);  } -  inline bool operator==(const AlignmentObservation& a, const AlignmentObservation& b) {    return hash_value(a) == hash_value(b);  } +#else +inline size_t hash_value(const AlignmentObservation& o) { +  size_t h = 1; +  boost::hash_combine(h, o.src_len); +  boost::hash_combine(h, o.trg_len); +  boost::hash_combine(h, o.j); +  boost::hash_combine(h, o.a_j); +  return h; +} +#endif  struct QuasiModel2 {    explicit QuasiModel2(double alpha, double pnull = 0.1) : diff --git a/gi/pf/tied_resampler.h b/gi/pf/tied_resampler.h index 6f45fbce..a4f4af36 100644 --- a/gi/pf/tied_resampler.h +++ b/gi/pf/tied_resampler.h @@ -78,10 +78,8 @@ struct TiedResampler {                              std::numeric_limits<double>::infinity(), 0.0, niterations, 100*niterations);      std::cerr << "TiedCRPs(d=" << discount << ",s="                << strength << ") = " << LogLikelihood(discount, strength) << std::endl; -    for (typename std::set<CRP*>::iterator it = crps.begin(); it != crps.end(); ++it) { -      (*it)->set_discount(discount); -      (*it)->set_strength(strength); -    } +    for (typename std::set<CRP*>::iterator it = crps.begin(); it != crps.end(); ++it) +      (*it)->set_hyperparameters(discount, strength);    }   private:    std::set<CRP*> crps; | 
