diff options
author | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
---|---|---|
committer | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
commit | 3d8d656fa7911524e0e6885647173474524e0784 (patch) | |
tree | 81b1ee2fcb67980376d03f0aa48e42e53abff222 /gi/pf/pfnaive.cc | |
parent | be7f57fdd484e063775d7abf083b9fa4c403b610 (diff) | |
parent | 96fedabebafe7a38a6d5928be8fff767e411d705 (diff) |
fixed conflicts
Diffstat (limited to 'gi/pf/pfnaive.cc')
-rw-r--r-- | gi/pf/pfnaive.cc | 284 |
1 files changed, 0 insertions, 284 deletions
diff --git a/gi/pf/pfnaive.cc b/gi/pf/pfnaive.cc deleted file mode 100644 index 958ec4e2..00000000 --- a/gi/pf/pfnaive.cc +++ /dev/null @@ -1,284 +0,0 @@ -#include <iostream> -#include <tr1/memory> -#include <queue> - -#include <boost/functional.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -#include "pf.h" -#include "base_distributions.h" -#include "monotonic_pseg.h" -#include "reachability.h" -#include "viterbi.h" -#include "hg.h" -#include "trule.h" -#include "tdict.h" -#include "filelib.h" -#include "dict.h" -#include "sampler.h" -#include "ccrp_nt.h" -#include "ccrp_onetable.h" -#include "corpus.h" - -using namespace std; -using namespace tr1; -namespace po = boost::program_options; - -boost::shared_ptr<MT19937> prng; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") - ("particles,p",po::value<unsigned>()->default_value(30),"Number of particles") - ("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings") - ("input,i",po::value<string>(),"Read parallel data from") - ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases") - ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases") - ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)") - ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)") - ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution") - ("random_seed,S",po::value<uint32_t>(), "Random seed"); - po::options_description clo("Command line options"); - clo.add_options() - ("config", po::value<string>(), "Configuration file") - ("help,h", "Print this help message and exit"); - po::options_description dconfig_options, dcmdline_options; - dconfig_options.add(opts); - dcmdline_options.add(opts).add(clo); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("config")) { - ifstream config((*conf)["config"].as<string>().c_str()); - po::store(po::parse_config_file(config, dconfig_options), *conf); - } - po::notify(*conf); - - if (conf->count("help") || (conf->count("input") == 0)) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -struct BackwardEstimateSym { - BackwardEstimateSym(const Model1& m1, - const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) : - model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) { - } - const prob_t& operator()(unsigned src_cov, unsigned trg_cov) const { - assert(src_cov <= src_.size()); - assert(trg_cov <= trg_.size()); - prob_t& e = cache_[src_cov][trg_cov]; - if (e.is_0()) { - if (trg_cov == trg_.size()) { e = prob_t::One(); return e; } - vector<WordID> r(src_.size() + 1); r.clear(); - for (int i = src_cov; i < src_.size(); ++i) - r.push_back(src_[i]); - r.push_back(0); // NULL word - const prob_t uniform_alignment(1.0 / r.size()); - e.logeq(Md::log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining) - for (unsigned j = trg_cov; j < trg_.size(); ++j) { - prob_t p; - for (unsigned i = 0; i < r.size(); ++i) - p += model1_(r[i], trg_[j]); - if (p.is_0()) { - cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n"; - abort(); - } - p *= uniform_alignment; - e *= p; - } - r.pop_back(); - const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0)); - prob_t inv; - inv.logeq(Md::log_poisson(r.size(), trg_.size() - trg_cov)); - for (unsigned i = 0; i < r.size(); ++i) { - prob_t p; - for (unsigned j = trg_cov - 1; j < trg_.size(); ++j) - p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]); - if (p.is_0()) { - cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n"; - abort(); - } - p *= inv_uniform; - inv *= p; - } - prob_t x = pow(e * inv, 0.5); - e = x; - //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl; - } - return e; - } - const Model1& model1_; - const Model1& invmodel1_; - const vector<WordID>& src_; - const vector<WordID>& trg_; - mutable unordered_map<unsigned, map<unsigned, prob_t> > cache_; -}; - -struct Particle { - Particle() : weight(prob_t::One()), src_cov(), trg_cov() {} - prob_t weight; - prob_t gamma_last; - vector<TRulePtr> rules; - int src_cov; - int trg_cov; -}; - -ostream& operator<<(ostream& o, const vector<bool>& v) { - for (int i = 0; i < v.size(); ++i) - o << (v[i] ? '1' : '0'); - return o; -} -ostream& operator<<(ostream& o, const Particle& p) { - o << "[src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']'; - return o; -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>(); - const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>(); - const unsigned particles = conf["particles"].as<unsigned>(); - const unsigned samples = conf["samples"].as<unsigned>(); - const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>(); - - if (!conf.count("model1")) { - cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n"; - return 1; - } - if (conf.count("random_seed")) - prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); - else - prng.reset(new MT19937); - MT19937& rng = *prng; - - vector<vector<WordID> > corpuse, corpusf; - set<WordID> vocabe, vocabf; - cerr << "Reading corpus...\n"; - corpus::ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe); - cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n"; - cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; - assert(corpusf.size() == corpuse.size()); - - const int kLHS = -TD::Convert("X"); - Model1 m1(conf["model1"].as<string>()); - Model1 invm1(conf["inverse_model1"].as<string>()); - - PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size()); - PhraseJointBase_BiDir alp0(m1, invm1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size()); - MonotonicParallelSegementationModel<PhraseJointBase_BiDir> m(alp0); - TRule xx("[X] ||| ms. kimura ||| MS. KIMURA ||| X=0"); - cerr << xx << endl << lp0(xx) << " " << alp0(xx) << endl; - TRule xx12("[X] ||| . ||| PHARMACY . ||| X=0"); - TRule xx21("[X] ||| pharmacy . ||| . ||| X=0"); -// TRule xx22("[X] ||| . ||| . ||| X=0"); - TRule xx22("[X] ||| . ||| THE . ||| X=0"); - cerr << xx12 << "\t" << lp0(xx12) << " " << alp0(xx12) << endl; - cerr << xx21 << "\t" << lp0(xx21) << " " << alp0(xx21) << endl; - cerr << xx22 << "\t" << lp0(xx22) << " " << alp0(xx22) << endl; - - cerr << "Initializing reachability limits...\n"; - vector<Particle> ps(corpusf.size()); - vector<Reachability> reaches; reaches.reserve(corpusf.size()); - for (int ci = 0; ci < corpusf.size(); ++ci) - reaches.push_back(Reachability(corpusf[ci].size(), - corpuse[ci].size(), - kMAX_SRC_PHRASE, - kMAX_TRG_PHRASE)); - cerr << "Sampling...\n"; - vector<Particle> tmp_p(10000); // work space - SampleSet<prob_t> pfss; - SystematicResampleFilter<Particle> filter(&rng); - // MultinomialResampleFilter<Particle> filter(&rng); - for (int SS=0; SS < samples; ++SS) { - for (int ci = 0; ci < corpusf.size(); ++ci) { - vector<int>& src = corpusf[ci]; - vector<int>& trg = corpuse[ci]; - m.DecrementRulesAndStops(ps[ci].rules); - const prob_t q_stop = m.StopProbability(); - const prob_t q_cont = m.ContinueProbability(); - cerr << "P(stop)=" << q_stop << "\tP(continue)=" <<q_cont << endl; - - BackwardEstimateSym be(m1, invm1, src, trg); - const Reachability& r = reaches[ci]; - vector<Particle> lps(particles); - - bool all_complete = false; - while(!all_complete) { - SampleSet<prob_t> ss; - - // all particles have now been extended a bit, we will reweight them now - if (lps[0].trg_cov > 0) - filter(&lps); - - // loop over all particles and extend them - bool done_nothing = true; - for (int pi = 0; pi < particles; ++pi) { - Particle& p = lps[pi]; - int tic = 0; - while(p.trg_cov < trg.size() && tic < rejuv_freq) { - ++tic; - done_nothing = false; - ss.clear(); - TRule x; x.lhs_ = kLHS; - prob_t z; - - for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) { - x.e_.push_back(trg[trg_len - 1 + p.trg_cov]); - for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) { - if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue; - - int i = p.src_cov; - assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size - Particle& np = tmp_p[ss.size()]; - np = p; - x.f_.clear(); - for (int j = 0; j < src_len; ++j) - x.f_.push_back(src[i + j]); - np.src_cov += x.f_.size(); - np.trg_cov += x.e_.size(); - const bool stop_now = (np.src_cov == src_len && np.trg_cov == trg_len); - prob_t rp = m.RuleProbability(x) * (stop_now ? q_stop : q_cont); - np.gamma_last = rp; - const prob_t u = pow(np.gamma_last * pow(be(np.src_cov, np.trg_cov), 1.2), 0.1); - //cerr << "**rule=" << x << endl; - //cerr << " u=" << log(u) << " rule=" << rp << endl; - ss.add(u); - np.rules.push_back(TRulePtr(new TRule(x))); - z += u; - } - } - //cerr << "number of edges to consider: " << ss.size() << endl; - const int sampled = rng.SelectSample(ss); - prob_t q_n = ss[sampled] / z; - p = tmp_p[sampled]; - //m.IncrementRule(*p.rules.back()); - p.weight *= p.gamma_last / q_n; - //cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl; - //cerr << p << endl; - } - } // loop over particles (pi = 0 .. particles) - if (done_nothing) all_complete = true; - prob_t wv = prob_t::Zero(); - for (int pp = 0; pp < lps.size(); ++pp) - wv += lps[pp].weight; - for (int pp = 0; pp < lps.size(); ++pp) - lps[pp].weight /= wv; - } - pfss.clear(); - for (int i = 0; i < lps.size(); ++i) - pfss.add(lps[i].weight); - const int sampled = rng.SelectSample(pfss); - ps[ci] = lps[sampled]; - m.IncrementRulesAndStops(lps[sampled].rules); - for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; } - cerr << "tmp-LLH: " << log(m.Likelihood()) << endl; - } - cerr << "LLH: " << log(m.Likelihood()) << endl; - } - return 0; -} - |