summaryrefslogtreecommitdiff
path: root/gi/pf/pfdist.cc
diff options
context:
space:
mode:
authorChris Dyer <cdyer@cs.cmu.edu>2012-10-11 14:06:32 -0400
committerChris Dyer <cdyer@cs.cmu.edu>2012-10-11 14:06:32 -0400
commit07ea7b64b6f85e5798a8068453ed9fd2b97396db (patch)
tree644496a1690d84d82a396bbc1e39160788beb2cd /gi/pf/pfdist.cc
parent37b9e45e5cb29d708f7249dbe0b0fb27685282a0 (diff)
parenta36fcc5d55c1de84ae68c1091ebff2b1c32dc3b7 (diff)
Merge branch 'master' of https://github.com/redpony/cdec
Diffstat (limited to 'gi/pf/pfdist.cc')
-rw-r--r--gi/pf/pfdist.cc598
1 files changed, 0 insertions, 598 deletions
diff --git a/gi/pf/pfdist.cc b/gi/pf/pfdist.cc
deleted file mode 100644
index a3e46064..00000000
--- a/gi/pf/pfdist.cc
+++ /dev/null
@@ -1,598 +0,0 @@
-#include <iostream>
-#include <tr1/memory>
-#include <queue>
-
-#include <boost/functional.hpp>
-#include <boost/program_options.hpp>
-#include <boost/program_options/variables_map.hpp>
-
-#include "pf.h"
-#include "base_distributions.h"
-#include "reachability.h"
-#include "viterbi.h"
-#include "hg.h"
-#include "trule.h"
-#include "tdict.h"
-#include "filelib.h"
-#include "dict.h"
-#include "sampler.h"
-#include "ccrp_nt.h"
-#include "ccrp_onetable.h"
-
-using namespace std;
-using namespace tr1;
-namespace po = boost::program_options;
-
-boost::shared_ptr<MT19937> prng;
-
-void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
- po::options_description opts("Configuration options");
- opts.add_options()
- ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
- ("particles,p",po::value<unsigned>()->default_value(30),"Number of particles")
- ("filter_frequency,f",po::value<unsigned>()->default_value(5),"Number of time steps between filterings")
- ("input,i",po::value<string>(),"Read parallel data from")
- ("max_src_phrase",po::value<unsigned>()->default_value(5),"Maximum length of source language phrases")
- ("max_trg_phrase",po::value<unsigned>()->default_value(5),"Maximum length of target language phrases")
- ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
- ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
- ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
- ("random_seed,S",po::value<uint32_t>(), "Random seed");
- po::options_description clo("Command line options");
- clo.add_options()
- ("config", po::value<string>(), "Configuration file")
- ("help,h", "Print this help message and exit");
- po::options_description dconfig_options, dcmdline_options;
- dconfig_options.add(opts);
- dcmdline_options.add(opts).add(clo);
-
- po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- if (conf->count("config")) {
- ifstream config((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(config, dconfig_options), *conf);
- }
- po::notify(*conf);
-
- if (conf->count("help") || (conf->count("input") == 0)) {
- cerr << dcmdline_options << endl;
- exit(1);
- }
-}
-
-void ReadParallelCorpus(const string& filename,
- vector<vector<WordID> >* f,
- vector<vector<WordID> >* e,
- set<WordID>* vocab_f,
- set<WordID>* vocab_e) {
- f->clear();
- e->clear();
- vocab_f->clear();
- vocab_e->clear();
- istream* in;
- if (filename == "-")
- in = &cin;
- else
- in = new ifstream(filename.c_str());
- assert(*in);
- string line;
- const WordID kDIV = TD::Convert("|||");
- vector<WordID> tmp;
- while(*in) {
- getline(*in, line);
- if (line.empty() && !*in) break;
- e->push_back(vector<int>());
- f->push_back(vector<int>());
- vector<int>& le = e->back();
- vector<int>& lf = f->back();
- tmp.clear();
- TD::ConvertSentence(line, &tmp);
- bool isf = true;
- for (unsigned i = 0; i < tmp.size(); ++i) {
- const int cur = tmp[i];
- if (isf) {
- if (kDIV == cur) { isf = false; } else {
- lf.push_back(cur);
- vocab_f->insert(cur);
- }
- } else {
- assert(cur != kDIV);
- le.push_back(cur);
- vocab_e->insert(cur);
- }
- }
- assert(isf == false);
- }
- if (in != &cin) delete in;
-}
-
-#if 0
-struct MyConditionalModel {
- MyConditionalModel(PhraseConditionalBase& rcp0) : rp0(&rcp0), base(prob_t::One()), src_phrases(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}
-
- prob_t srcp0(const vector<WordID>& src) const {
- prob_t p(1.0 / 3000.0);
- p.poweq(src.size());
- prob_t lenp; lenp.logeq(log_poisson(src.size(), 1.0));
- p *= lenp;
- return p;
- }
-
- void DecrementRule(const TRule& rule) {
- const RuleCRPMap::iterator it = rules.find(rule.f_);
- assert(it != rules.end());
- if (it->second.decrement(rule)) {
- base /= (*rp0)(rule);
- if (it->second.num_customers() == 0)
- rules.erase(it);
- }
- if (src_phrases.decrement(rule.f_))
- base /= srcp0(rule.f_);
- }
-
- void IncrementRule(const TRule& rule) {
- RuleCRPMap::iterator it = rules.find(rule.f_);
- if (it == rules.end())
- it = rules.insert(make_pair(rule.f_, CCRP_NoTable<TRule>(1,1))).first;
- if (it->second.increment(rule)) {
- base *= (*rp0)(rule);
- }
- if (src_phrases.increment(rule.f_))
- base *= srcp0(rule.f_);
- }
-
- void IncrementRules(const vector<TRulePtr>& rules) {
- for (int i = 0; i < rules.size(); ++i)
- IncrementRule(*rules[i]);
- }
-
- void DecrementRules(const vector<TRulePtr>& rules) {
- for (int i = 0; i < rules.size(); ++i)
- DecrementRule(*rules[i]);
- }
-
- void IncrementJump(int dist, unsigned src_len) {
- assert(src_len > 0);
- if (src_jumps[src_len].increment(dist))
- base *= jp0(dist, src_len);
- }
-
- void DecrementJump(int dist, unsigned src_len) {
- assert(src_len > 0);
- if (src_jumps[src_len].decrement(dist))
- base /= jp0(dist, src_len);
- }
-
- void IncrementJumps(const vector<int>& js, unsigned src_len) {
- for (unsigned i = 0; i < js.size(); ++i)
- IncrementJump(js[i], src_len);
- }
-
- void DecrementJumps(const vector<int>& js, unsigned src_len) {
- for (unsigned i = 0; i < js.size(); ++i)
- DecrementJump(js[i], src_len);
- }
-
- // p(jump = dist | src_len , z)
- prob_t JumpProbability(int dist, unsigned src_len) {
- const prob_t p0 = jp0(dist, src_len);
- const double lp = src_jumps[src_len].logprob(dist, log(p0));
- prob_t q; q.logeq(lp);
- return q;
- }
-
- // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
- prob_t RuleProbability(const TRule& rule) const {
- const prob_t p0 = (*rp0)(rule);
- prob_t srcp; srcp.logeq(src_phrases.logprob(rule.f_, log(srcp0(rule.f_))));
- const RuleCRPMap::const_iterator it = rules.find(rule.f_);
- if (it == rules.end()) return srcp * p0;
- const double lp = it->second.logprob(rule, log(p0));
- prob_t q; q.logeq(lp);
- return q * srcp;
- }
-
- prob_t Likelihood() const {
- prob_t p = base;
- for (RuleCRPMap::const_iterator it = rules.begin();
- it != rules.end(); ++it) {
- prob_t cl; cl.logeq(it->second.log_crp_prob());
- p *= cl;
- }
- for (unsigned l = 1; l < src_jumps.size(); ++l) {
- if (src_jumps[l].num_customers() > 0) {
- prob_t q;
- q.logeq(src_jumps[l].log_crp_prob());
- p *= q;
- }
- }
- return p;
- }
-
- JumpBase jp0;
- const PhraseConditionalBase* rp0;
- prob_t base;
- typedef unordered_map<vector<WordID>, CCRP_NoTable<TRule>, boost::hash<vector<WordID> > > RuleCRPMap;
- RuleCRPMap rules;
- CCRP_NoTable<vector<WordID> > src_phrases;
- vector<CCRP_NoTable<int> > src_jumps;
-};
-
-#endif
-
-struct MyJointModel {
- MyJointModel(PhraseJointBase& rcp0) :
- rp0(rcp0), base(prob_t::One()), rules(1,1), src_jumps(200, CCRP_NoTable<int>(1,1)) {}
-
- void DecrementRule(const TRule& rule) {
- if (rules.decrement(rule))
- base /= rp0(rule);
- }
-
- void IncrementRule(const TRule& rule) {
- if (rules.increment(rule))
- base *= rp0(rule);
- }
-
- void IncrementRules(const vector<TRulePtr>& rules) {
- for (int i = 0; i < rules.size(); ++i)
- IncrementRule(*rules[i]);
- }
-
- void DecrementRules(const vector<TRulePtr>& rules) {
- for (int i = 0; i < rules.size(); ++i)
- DecrementRule(*rules[i]);
- }
-
- void IncrementJump(int dist, unsigned src_len) {
- assert(src_len > 0);
- if (src_jumps[src_len].increment(dist))
- base *= jp0(dist, src_len);
- }
-
- void DecrementJump(int dist, unsigned src_len) {
- assert(src_len > 0);
- if (src_jumps[src_len].decrement(dist))
- base /= jp0(dist, src_len);
- }
-
- void IncrementJumps(const vector<int>& js, unsigned src_len) {
- for (unsigned i = 0; i < js.size(); ++i)
- IncrementJump(js[i], src_len);
- }
-
- void DecrementJumps(const vector<int>& js, unsigned src_len) {
- for (unsigned i = 0; i < js.size(); ++i)
- DecrementJump(js[i], src_len);
- }
-
- // p(jump = dist | src_len , z)
- prob_t JumpProbability(int dist, unsigned src_len) {
- const prob_t p0 = jp0(dist, src_len);
- const double lp = src_jumps[src_len].logprob(dist, log(p0));
- prob_t q; q.logeq(lp);
- return q;
- }
-
- // p(rule.f_ | z) * p(rule.e_ | rule.f_ , z)
- prob_t RuleProbability(const TRule& rule) const {
- prob_t p; p.logeq(rules.logprob(rule, log(rp0(rule))));
- return p;
- }
-
- prob_t Likelihood() const {
- prob_t p = base;
- prob_t q; q.logeq(rules.log_crp_prob());
- p *= q;
- for (unsigned l = 1; l < src_jumps.size(); ++l) {
- if (src_jumps[l].num_customers() > 0) {
- prob_t q;
- q.logeq(src_jumps[l].log_crp_prob());
- p *= q;
- }
- }
- return p;
- }
-
- JumpBase jp0;
- const PhraseJointBase& rp0;
- prob_t base;
- CCRP_NoTable<TRule> rules;
- vector<CCRP_NoTable<int> > src_jumps;
-};
-
-struct BackwardEstimate {
- BackwardEstimate(const Model1& m1, const vector<WordID>& src, const vector<WordID>& trg) :
- model1_(m1), src_(src), trg_(trg) {
- }
- const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
- assert(src_.size() == src_cov.size());
- assert(trg_cov <= trg_.size());
- prob_t& e = cache_[src_cov][trg_cov];
- if (e.is_0()) {
- if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
- vector<WordID> r(src_.size() + 1); r.clear();
- r.push_back(0); // NULL word
- for (int i = 0; i < src_cov.size(); ++i)
- if (!src_cov[i]) r.push_back(src_[i]);
- const prob_t uniform_alignment(1.0 / r.size());
- e.logeq(Md::log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
- for (unsigned j = trg_cov; j < trg_.size(); ++j) {
- prob_t p;
- for (unsigned i = 0; i < r.size(); ++i)
- p += model1_(r[i], trg_[j]);
- if (p.is_0()) {
- cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
- abort();
- }
- p *= uniform_alignment;
- e *= p;
- }
- }
- return e;
- }
- const Model1& model1_;
- const vector<WordID>& src_;
- const vector<WordID>& trg_;
- mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
-};
-
-struct BackwardEstimateSym {
- BackwardEstimateSym(const Model1& m1,
- const Model1& invm1, const vector<WordID>& src, const vector<WordID>& trg) :
- model1_(m1), invmodel1_(invm1), src_(src), trg_(trg) {
- }
- const prob_t& operator()(const vector<bool>& src_cov, unsigned trg_cov) const {
- assert(src_.size() == src_cov.size());
- assert(trg_cov <= trg_.size());
- prob_t& e = cache_[src_cov][trg_cov];
- if (e.is_0()) {
- if (trg_cov == trg_.size()) { e = prob_t::One(); return e; }
- vector<WordID> r(src_.size() + 1); r.clear();
- for (int i = 0; i < src_cov.size(); ++i)
- if (!src_cov[i]) r.push_back(src_[i]);
- r.push_back(0); // NULL word
- const prob_t uniform_alignment(1.0 / r.size());
- e.logeq(Md::log_poisson(trg_.size() - trg_cov, r.size() - 1)); // p(trg len remaining | src len remaining)
- for (unsigned j = trg_cov; j < trg_.size(); ++j) {
- prob_t p;
- for (unsigned i = 0; i < r.size(); ++i)
- p += model1_(r[i], trg_[j]);
- if (p.is_0()) {
- cerr << "ERROR: p(" << TD::Convert(trg_[j]) << " | " << TD::GetString(r) << ") = 0!\n";
- abort();
- }
- p *= uniform_alignment;
- e *= p;
- }
- r.pop_back();
- const prob_t inv_uniform(1.0 / (trg_.size() - trg_cov + 1.0));
- prob_t inv;
- inv.logeq(Md::log_poisson(r.size(), trg_.size() - trg_cov));
- for (unsigned i = 0; i < r.size(); ++i) {
- prob_t p;
- for (unsigned j = trg_cov - 1; j < trg_.size(); ++j)
- p += invmodel1_(j < trg_cov ? 0 : trg_[j], r[i]);
- if (p.is_0()) {
- cerr << "ERROR: p_inv(" << TD::Convert(r[i]) << " | " << TD::GetString(trg_) << ") = 0!\n";
- abort();
- }
- p *= inv_uniform;
- inv *= p;
- }
- prob_t x = pow(e * inv, 0.5);
- e = x;
- //cerr << "Forward: " << log(e) << "\tBackward: " << log(inv) << "\t prop: " << log(x) << endl;
- }
- return e;
- }
- const Model1& model1_;
- const Model1& invmodel1_;
- const vector<WordID>& src_;
- const vector<WordID>& trg_;
- mutable unordered_map<vector<bool>, map<unsigned, prob_t>, boost::hash<vector<bool> > > cache_;
-};
-
-struct Particle {
- Particle() : weight(prob_t::One()), src_cov(), trg_cov(), prev_pos(-1) {}
- prob_t weight;
- prob_t gamma_last;
- vector<int> src_jumps;
- vector<TRulePtr> rules;
- vector<bool> src_cv;
- int src_cov;
- int trg_cov;
- int prev_pos;
-};
-
-ostream& operator<<(ostream& o, const vector<bool>& v) {
- for (int i = 0; i < v.size(); ++i)
- o << (v[i] ? '1' : '0');
- return o;
-}
-ostream& operator<<(ostream& o, const Particle& p) {
- o << "[cv=" << p.src_cv << " src_cov=" << p.src_cov << " trg_cov=" << p.trg_cov << " last_pos=" << p.prev_pos << " num_rules=" << p.rules.size() << " w=" << log(p.weight) << ']';
- return o;
-}
-
-int main(int argc, char** argv) {
- po::variables_map conf;
- InitCommandLine(argc, argv, &conf);
- const unsigned kMAX_TRG_PHRASE = conf["max_trg_phrase"].as<unsigned>();
- const unsigned kMAX_SRC_PHRASE = conf["max_src_phrase"].as<unsigned>();
- const unsigned particles = conf["particles"].as<unsigned>();
- const unsigned samples = conf["samples"].as<unsigned>();
- const unsigned rejuv_freq = conf["filter_frequency"].as<unsigned>();
-
- if (!conf.count("model1")) {
- cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
- return 1;
- }
- if (conf.count("random_seed"))
- prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
- else
- prng.reset(new MT19937);
- MT19937& rng = *prng;
-
- vector<vector<WordID> > corpuse, corpusf;
- set<WordID> vocabe, vocabf;
- cerr << "Reading corpus...\n";
- ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
- cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
- cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
- assert(corpusf.size() == corpuse.size());
-
- const int kLHS = -TD::Convert("X");
- Model1 m1(conf["model1"].as<string>());
- Model1 invm1(conf["inverse_model1"].as<string>());
-
-#if 0
- PhraseConditionalBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size());
- MyConditionalModel m(lp0);
-#else
- PhraseJointBase lp0(m1, conf["model1_interpolation_weight"].as<double>(), vocabe.size(), vocabf.size());
- MyJointModel m(lp0);
-#endif
-
- MultinomialResampleFilter<Particle> filter(&rng);
- cerr << "Initializing reachability limits...\n";
- vector<Particle> ps(corpusf.size());
- vector<Reachability> reaches; reaches.reserve(corpusf.size());
- for (int ci = 0; ci < corpusf.size(); ++ci)
- reaches.push_back(Reachability(corpusf[ci].size(),
- corpuse[ci].size(),
- kMAX_SRC_PHRASE,
- kMAX_TRG_PHRASE));
- cerr << "Sampling...\n";
- vector<Particle> tmp_p(10000); // work space
- SampleSet<prob_t> pfss;
- for (int SS=0; SS < samples; ++SS) {
- for (int ci = 0; ci < corpusf.size(); ++ci) {
- vector<int>& src = corpusf[ci];
- vector<int>& trg = corpuse[ci];
- m.DecrementRules(ps[ci].rules);
- m.DecrementJumps(ps[ci].src_jumps, src.size());
-
- //BackwardEstimate be(m1, src, trg);
- BackwardEstimateSym be(m1, invm1, src, trg);
- const Reachability& r = reaches[ci];
- vector<Particle> lps(particles);
-
- for (int pi = 0; pi < particles; ++pi) {
- Particle& p = lps[pi];
- p.src_cv.resize(src.size(), false);
- }
-
- bool all_complete = false;
- while(!all_complete) {
- SampleSet<prob_t> ss;
-
- // all particles have now been extended a bit, we will reweight them now
- if (lps[0].trg_cov > 0)
- filter(&lps);
-
- // loop over all particles and extend them
- bool done_nothing = true;
- for (int pi = 0; pi < particles; ++pi) {
- Particle& p = lps[pi];
- int tic = 0;
- while(p.trg_cov < trg.size() && tic < rejuv_freq) {
- ++tic;
- done_nothing = false;
- ss.clear();
- TRule x; x.lhs_ = kLHS;
- prob_t z;
- int first_uncovered = src.size();
- int last_uncovered = -1;
- for (int i = 0; i < src.size(); ++i) {
- const bool is_uncovered = !p.src_cv[i];
- if (i < first_uncovered && is_uncovered) first_uncovered = i;
- if (is_uncovered && i > last_uncovered) last_uncovered = i;
- }
- assert(last_uncovered > -1);
- assert(first_uncovered < src.size());
-
- for (int trg_len = 1; trg_len <= kMAX_TRG_PHRASE; ++trg_len) {
- x.e_.push_back(trg[trg_len - 1 + p.trg_cov]);
- for (int src_len = 1; src_len <= kMAX_SRC_PHRASE; ++src_len) {
- if (!r.edges[p.src_cov][p.trg_cov][src_len][trg_len]) continue;
-
- const int last_possible_start = last_uncovered - src_len + 1;
- assert(last_possible_start >= 0);
- //cerr << src_len << "," << trg_len << " is allowed. E=" << TD::GetString(x.e_) << endl;
- //cerr << " first_uncovered=" << first_uncovered << " last_possible_start=" << last_possible_start << endl;
- for (int i = first_uncovered; i <= last_possible_start; ++i) {
- if (p.src_cv[i]) continue;
- assert(ss.size() < tmp_p.size()); // if fails increase tmp_p size
- Particle& np = tmp_p[ss.size()];
- np = p;
- x.f_.clear();
- int gap_add = 0;
- bool bad = false;
- prob_t jp = prob_t::One();
- int prev_pos = p.prev_pos;
- for (int j = 0; j < src_len; ++j) {
- if ((j + i + gap_add) == src.size()) { bad = true; break; }
- while ((i+j+gap_add) < src.size() && p.src_cv[i + j + gap_add]) { ++gap_add; }
- if ((j + i + gap_add) == src.size()) { bad = true; break; }
- np.src_cv[i + j + gap_add] = true;
- x.f_.push_back(src[i + j + gap_add]);
- jp *= m.JumpProbability(i + j + gap_add - prev_pos, src.size());
- int jump = i + j + gap_add - prev_pos;
- assert(jump != 0);
- np.src_jumps.push_back(jump);
- prev_pos = i + j + gap_add;
- }
- if (bad) continue;
- np.prev_pos = prev_pos;
- np.src_cov += x.f_.size();
- np.trg_cov += x.e_.size();
- if (x.f_.size() != src_len) continue;
- prob_t rp = m.RuleProbability(x);
- np.gamma_last = rp * jp;
- const prob_t u = pow(np.gamma_last * be(np.src_cv, np.trg_cov), 0.2);
- //cerr << "**rule=" << x << endl;
- //cerr << " u=" << log(u) << " rule=" << rp << " jump=" << jp << endl;
- ss.add(u);
- np.rules.push_back(TRulePtr(new TRule(x)));
- z += u;
-
- const bool completed = (p.trg_cov == trg.size());
- if (completed) {
- int last_jump = src.size() - p.prev_pos;
- assert(last_jump > 0);
- p.src_jumps.push_back(last_jump);
- p.weight *= m.JumpProbability(last_jump, src.size());
- }
- }
- }
- }
- cerr << "number of edges to consider: " << ss.size() << endl;
- const int sampled = rng.SelectSample(ss);
- prob_t q_n = ss[sampled] / z;
- p = tmp_p[sampled];
- //m.IncrementRule(*p.rules.back());
- p.weight *= p.gamma_last / q_n;
- cerr << "[w=" << log(p.weight) << "]\tsampled rule: " << p.rules.back()->AsString() << endl;
- cerr << p << endl;
- }
- } // loop over particles (pi = 0 .. particles)
- if (done_nothing) all_complete = true;
- }
- pfss.clear();
- for (int i = 0; i < lps.size(); ++i)
- pfss.add(lps[i].weight);
- const int sampled = rng.SelectSample(pfss);
- ps[ci] = lps[sampled];
- m.IncrementRules(lps[sampled].rules);
- m.IncrementJumps(lps[sampled].src_jumps, src.size());
- for (int i = 0; i < lps[sampled].rules.size(); ++i) { cerr << "S:\t" << lps[sampled].rules[i]->AsString() << "\n"; }
- cerr << "tmp-LLH: " << log(m.Likelihood()) << endl;
- }
- cerr << "LLH: " << log(m.Likelihood()) << endl;
- for (int sni = 0; sni < 5; ++sni) {
- for (int i = 0; i < ps[sni].rules.size(); ++i) { cerr << "\t" << ps[sni].rules[i]->AsString() << endl; }
- }
- }
- return 0;
-}
-