diff options
author | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
---|---|---|
committer | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
commit | 3d8d656fa7911524e0e6885647173474524e0784 (patch) | |
tree | 81b1ee2fcb67980376d03f0aa48e42e53abff222 /gi/pf/learn_cfg.cc | |
parent | be7f57fdd484e063775d7abf083b9fa4c403b610 (diff) | |
parent | 96fedabebafe7a38a6d5928be8fff767e411d705 (diff) |
fixed conflicts
Diffstat (limited to 'gi/pf/learn_cfg.cc')
-rw-r--r-- | gi/pf/learn_cfg.cc | 428 |
1 files changed, 0 insertions, 428 deletions
diff --git a/gi/pf/learn_cfg.cc b/gi/pf/learn_cfg.cc deleted file mode 100644 index 1d5126e4..00000000 --- a/gi/pf/learn_cfg.cc +++ /dev/null @@ -1,428 +0,0 @@ -#include <iostream> -#include <tr1/memory> -#include <queue> - -#include <boost/functional.hpp> -#include <boost/program_options.hpp> -#include <boost/program_options/variables_map.hpp> - -#include "inside_outside.h" -#include "hg.h" -#include "bottom_up_parser.h" -#include "fdict.h" -#include "grammar.h" -#include "m.h" -#include "trule.h" -#include "tdict.h" -#include "filelib.h" -#include "dict.h" -#include "sampler.h" -#include "ccrp.h" -#include "ccrp_onetable.h" - -using namespace std; -using namespace tr1; -namespace po = boost::program_options; - -boost::shared_ptr<MT19937> prng; -vector<int> nt_vocab; -vector<int> nt_id_to_index; -static unsigned kMAX_RULE_SIZE = 0; -static unsigned kMAX_ARITY = 0; -static bool kALLOW_MIXED = true; // allow rules with mixed terminals and NTs -static bool kHIERARCHICAL_PRIOR = false; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples") - ("input,i",po::value<string>(),"Read parallel data from") - ("max_rule_size,m", po::value<unsigned>()->default_value(0), "Maximum rule size (0 for unlimited)") - ("max_arity,a", po::value<unsigned>()->default_value(0), "Maximum number of nonterminals in a rule (0 for unlimited)") - ("no_mixed_rules,M", "Do not mix terminals and nonterminals in a rule RHS") - ("nonterminals,n", po::value<unsigned>()->default_value(1), "Size of nonterminal vocabulary") - ("hierarchical_prior,h", "Use hierarchical prior") - ("random_seed,S",po::value<uint32_t>(), "Random seed"); - po::options_description clo("Command line options"); - clo.add_options() - ("config", po::value<string>(), "Configuration file") - ("help", "Print this help message and exit"); - po::options_description dconfig_options, dcmdline_options; - dconfig_options.add(opts); - dcmdline_options.add(opts).add(clo); - - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("config")) { - ifstream config((*conf)["config"].as<string>().c_str()); - po::store(po::parse_config_file(config, dconfig_options), *conf); - } - po::notify(*conf); - - if (conf->count("help") || (conf->count("input") == 0)) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -unsigned ReadCorpus(const string& filename, - vector<vector<WordID> >* e, - set<WordID>* vocab_e) { - e->clear(); - vocab_e->clear(); - istream* in; - if (filename == "-") - in = &cin; - else - in = new ifstream(filename.c_str()); - assert(*in); - string line; - unsigned toks = 0; - while(*in) { - getline(*in, line); - if (line.empty() && !*in) break; - e->push_back(vector<int>()); - vector<int>& le = e->back(); - TD::ConvertSentence(line, &le); - for (unsigned i = 0; i < le.size(); ++i) - vocab_e->insert(le[i]); - toks += le.size(); - } - if (in != &cin) delete in; - return toks; -} - -struct Grid { - // a b c d e - // 0 - 0 - - - vector<int> grid; -}; - -struct BaseRuleModel { - explicit BaseRuleModel(unsigned term_size, - unsigned nonterm_size = 1) : - unif_term(1.0 / term_size), - unif_nonterm(1.0 / nonterm_size) {} - prob_t operator()(const TRule& r) const { - prob_t p; p.logeq(Md::log_poisson(1.0, r.f_.size())); - const prob_t term_prob((2.0 + 0.01*r.f_.size()) / (r.f_.size() + 2)); - const prob_t nonterm_prob(1.0 - term_prob.as_float()); - for (unsigned i = 0; i < r.f_.size(); ++i) { - if (r.f_[i] <= 0) { // nonterminal - if (kALLOW_MIXED) p *= nonterm_prob; - p *= unif_nonterm; - } else { // terminal - if (kALLOW_MIXED) p *= term_prob; - p *= unif_term; - } - } - return p; - } - const prob_t unif_term, unif_nonterm; -}; - -struct HieroLMModel { - explicit HieroLMModel(unsigned vocab_size, unsigned num_nts = 1) : - base(vocab_size, num_nts), - q0(1,1,1,1), - nts(num_nts, CCRP<TRule>(1,1,1,1)) {} - - prob_t Prob(const TRule& r) const { - return nts[nt_id_to_index[-r.lhs_]].prob(r, p0(r)); - } - - inline prob_t p0(const TRule& r) const { - if (kHIERARCHICAL_PRIOR) - return q0.prob(r, base(r)); - else - return base(r); - } - - int Increment(const TRule& r, MT19937* rng) { - const int delta = nts[nt_id_to_index[-r.lhs_]].increment(r, p0(r), rng); - if (kHIERARCHICAL_PRIOR && delta) - q0.increment(r, base(r), rng); - return delta; - // return x.increment(r); - } - - int Decrement(const TRule& r, MT19937* rng) { - const int delta = nts[nt_id_to_index[-r.lhs_]].decrement(r, rng); - if (kHIERARCHICAL_PRIOR && delta) - q0.decrement(r, rng); - return delta; - //return x.decrement(r); - } - - prob_t Likelihood() const { - prob_t p = prob_t::One(); - for (unsigned i = 0; i < nts.size(); ++i) { - prob_t q; q.logeq(nts[i].log_crp_prob()); - p *= q; - for (CCRP<TRule>::const_iterator it = nts[i].begin(); it != nts[i].end(); ++it) { - prob_t tp = p0(it->first); - tp.poweq(it->second.num_tables()); - p *= tp; - } - } - if (kHIERARCHICAL_PRIOR) { - prob_t q; q.logeq(q0.log_crp_prob()); - p *= q; - for (CCRP<TRule>::const_iterator it = q0.begin(); it != q0.end(); ++it) { - prob_t tp = base(it->first); - tp.poweq(it->second.num_tables()); - p *= tp; - } - } - //for (CCRP_OneTable<TRule>::const_iterator it = x.begin(); it != x.end(); ++it) - // p *= base(it->first); - return p; - } - - void ResampleHyperparameters(MT19937* rng) { - for (unsigned i = 0; i < nts.size(); ++i) - nts[i].resample_hyperparameters(rng); - if (kHIERARCHICAL_PRIOR) { - q0.resample_hyperparameters(rng); - cerr << "[base d=" << q0.discount() << ", s=" << q0.strength() << "]"; - } - cerr << " d=" << nts[0].discount() << ", s=" << nts[0].strength() << endl; - } - - const BaseRuleModel base; - CCRP<TRule> q0; - vector<CCRP<TRule> > nts; - //CCRP_OneTable<TRule> x; -}; - -vector<GrammarIter* > tofreelist; - -HieroLMModel* plm; - -struct NPGrammarIter : public GrammarIter, public RuleBin { - NPGrammarIter() : arity() { tofreelist.push_back(this); } - NPGrammarIter(const TRulePtr& inr, const int a, int symbol) : arity(a) { - if (inr) { - r.reset(new TRule(*inr)); - } else { - r.reset(new TRule); - } - TRule& rr = *r; - rr.lhs_ = nt_vocab[0]; - rr.f_.push_back(symbol); - rr.e_.push_back(symbol < 0 ? (1-int(arity)) : symbol); - tofreelist.push_back(this); - } - inline static unsigned NextArity(int cur_a, int symbol) { - return cur_a + (symbol <= 0 ? 1 : 0); - } - virtual int GetNumRules() const { - if (r) return nt_vocab.size(); else return 0; - } - virtual TRulePtr GetIthRule(int i) const { - if (i == 0) return r; - TRulePtr nr(new TRule(*r)); - nr->lhs_ = nt_vocab[i]; - return nr; - } - virtual int Arity() const { - return arity; - } - virtual const RuleBin* GetRules() const { - if (!r) return NULL; else return this; - } - virtual const GrammarIter* Extend(int symbol) const { - const int next_arity = NextArity(arity, symbol); - if (kMAX_ARITY && next_arity > kMAX_ARITY) - return NULL; - if (!kALLOW_MIXED && r) { - bool t1 = r->f_.front() <= 0; - bool t2 = symbol <= 0; - if (t1 != t2) return NULL; - } - if (!kMAX_RULE_SIZE || !r || (r->f_.size() < kMAX_RULE_SIZE)) - return new NPGrammarIter(r, next_arity, symbol); - else - return NULL; - } - const unsigned char arity; - TRulePtr r; -}; - -struct NPGrammar : public Grammar { - virtual const GrammarIter* GetRoot() const { - return new NPGrammarIter; - } -}; - -prob_t TotalProb(const Hypergraph& hg) { - return Inside<prob_t, EdgeProb>(hg); -} - -void SampleDerivation(const Hypergraph& hg, MT19937* rng, vector<unsigned>* sampled_deriv) { - vector<prob_t> node_probs; - Inside<prob_t, EdgeProb>(hg, &node_probs); - queue<unsigned> q; - q.push(hg.nodes_.size() - 2); - while(!q.empty()) { - unsigned cur_node_id = q.front(); -// cerr << "NODE=" << cur_node_id << endl; - q.pop(); - const Hypergraph::Node& node = hg.nodes_[cur_node_id]; - const unsigned num_in_edges = node.in_edges_.size(); - unsigned sampled_edge = 0; - if (num_in_edges == 1) { - sampled_edge = node.in_edges_[0]; - } else { - //prob_t z; - assert(num_in_edges > 1); - SampleSet<prob_t> ss; - for (unsigned j = 0; j < num_in_edges; ++j) { - const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; - prob_t p = edge.edge_prob_; - for (unsigned k = 0; k < edge.tail_nodes_.size(); ++k) - p *= node_probs[edge.tail_nodes_[k]]; - ss.add(p); -// cerr << log(ss[j]) << " ||| " << edge.rule_->AsString() << endl; - //z += p; - } -// for (unsigned j = 0; j < num_in_edges; ++j) { -// const Hypergraph::Edge& edge = hg.edges_[node.in_edges_[j]]; -// cerr << exp(log(ss[j] / z)) << " ||| " << edge.rule_->AsString() << endl; -// } -// cerr << " --- \n"; - sampled_edge = node.in_edges_[rng->SelectSample(ss)]; - } - sampled_deriv->push_back(sampled_edge); - const Hypergraph::Edge& edge = hg.edges_[sampled_edge]; - for (unsigned j = 0; j < edge.tail_nodes_.size(); ++j) { - q.push(edge.tail_nodes_[j]); - } - } - for (unsigned i = 0; i < sampled_deriv->size(); ++i) { - cerr << *hg.edges_[(*sampled_deriv)[i]].rule_ << endl; - } -} - -void IncrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) { - for (unsigned i = 0; i < d.size(); ++i) - plm->Increment(*hg.edges_[d[i]].rule_, rng); -} - -void DecrementDerivation(const Hypergraph& hg, const vector<unsigned>& d, HieroLMModel* plm, MT19937* rng) { - for (unsigned i = 0; i < d.size(); ++i) - plm->Decrement(*hg.edges_[d[i]].rule_, rng); -} - -int main(int argc, char** argv) { - po::variables_map conf; - - InitCommandLine(argc, argv, &conf); - nt_vocab.resize(conf["nonterminals"].as<unsigned>()); - assert(nt_vocab.size() > 0); - assert(nt_vocab.size() < 26); - { - string nt = "X"; - for (unsigned i = 0; i < nt_vocab.size(); ++i) { - if (nt_vocab.size() > 1) nt[0] = ('A' + i); - int pid = TD::Convert(nt); - nt_vocab[i] = -pid; - if (pid >= nt_id_to_index.size()) { - nt_id_to_index.resize(pid + 1, -1); - } - nt_id_to_index[pid] = i; - } - } - vector<GrammarPtr> grammars; - grammars.push_back(GrammarPtr(new NPGrammar)); - - const unsigned samples = conf["samples"].as<unsigned>(); - kMAX_RULE_SIZE = conf["max_rule_size"].as<unsigned>(); - if (kMAX_RULE_SIZE == 1) { - cerr << "Invalid maximum rule size: must be 0 or >1\n"; - return 1; - } - kMAX_ARITY = conf["max_arity"].as<unsigned>(); - if (kMAX_ARITY == 1) { - cerr << "Invalid maximum arity: must be 0 or >1\n"; - return 1; - } - kALLOW_MIXED = !conf.count("no_mixed_rules"); - - kHIERARCHICAL_PRIOR = conf.count("hierarchical_prior"); - - if (conf.count("random_seed")) - prng.reset(new MT19937(conf["random_seed"].as<uint32_t>())); - else - prng.reset(new MT19937); - MT19937& rng = *prng; - vector<vector<WordID> > corpuse; - set<WordID> vocabe; - cerr << "Reading corpus...\n"; - const unsigned toks = ReadCorpus(conf["input"].as<string>(), &corpuse, &vocabe); - cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n"; - HieroLMModel lm(vocabe.size(), nt_vocab.size()); - - plm = &lm; - ExhaustiveBottomUpParser parser(TD::Convert(-nt_vocab[0]), grammars); - - Hypergraph hg; - const int kGoal = -TD::Convert("Goal"); - const int kLP = FD::Convert("LogProb"); - SparseVector<double> v; v.set_value(kLP, 1.0); - vector<vector<unsigned> > derivs(corpuse.size()); - vector<Lattice> cl(corpuse.size()); - for (int ci = 0; ci < corpuse.size(); ++ci) { - vector<int>& src = corpuse[ci]; - Lattice& lat = cl[ci]; - lat.resize(src.size()); - for (unsigned i = 0; i < src.size(); ++i) - lat[i].push_back(LatticeArc(src[i], 0.0, 1)); - } - for (int SS=0; SS < samples; ++SS) { - const bool is_last = ((samples - 1) == SS); - prob_t dlh = prob_t::One(); - for (int ci = 0; ci < corpuse.size(); ++ci) { - const vector<int>& src = corpuse[ci]; - const Lattice& lat = cl[ci]; - cerr << TD::GetString(src) << endl; - hg.clear(); - parser.Parse(lat, &hg); // exhaustive parse - vector<unsigned>& d = derivs[ci]; - if (!is_last) DecrementDerivation(hg, d, &lm, &rng); - for (unsigned i = 0; i < hg.edges_.size(); ++i) { - TRule& r = *hg.edges_[i].rule_; - if (r.lhs_ == kGoal) - hg.edges_[i].edge_prob_ = prob_t::One(); - else - hg.edges_[i].edge_prob_ = lm.Prob(r); - } - if (!is_last) { - d.clear(); - SampleDerivation(hg, &rng, &d); - IncrementDerivation(hg, derivs[ci], &lm, &rng); - } else { - prob_t p = TotalProb(hg); - dlh *= p; - cerr << " p(sentence) = " << log(p) << "\t" << log(dlh) << endl; - } - if (tofreelist.size() > 200000) { - cerr << "Freeing ... "; - for (unsigned i = 0; i < tofreelist.size(); ++i) - delete tofreelist[i]; - tofreelist.clear(); - cerr << "Freed.\n"; - } - } - double llh = log(lm.Likelihood()); - cerr << "LLH=" << llh << "\tENTROPY=" << (-llh / log(2) / toks) << "\tPPL=" << pow(2, -llh / log(2) / toks) << endl; - if (SS % 10 == 9) lm.ResampleHyperparameters(&rng); - if (is_last) { - double z = log(dlh); - cerr << "TOTAL_PROB=" << z << "\tENTROPY=" << (-z / log(2) / toks) << "\tPPL=" << pow(2, -z / log(2) / toks) << endl; - } - } - for (unsigned i = 0; i < nt_vocab.size(); ++i) - cerr << lm.nts[i] << endl; - return 0; -} - |