summaryrefslogtreecommitdiff
path: root/gi/pf/itg.cc
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit3d8d656fa7911524e0e6885647173474524e0784 (patch)
tree81b1ee2fcb67980376d03f0aa48e42e53abff222 /gi/pf/itg.cc
parentbe7f57fdd484e063775d7abf083b9fa4c403b610 (diff)
parent96fedabebafe7a38a6d5928be8fff767e411d705 (diff)
fixed conflicts
Diffstat (limited to 'gi/pf/itg.cc')
-rw-r--r--gi/pf/itg.cc275
1 files changed, 0 insertions, 275 deletions
diff --git a/gi/pf/itg.cc b/gi/pf/itg.cc
deleted file mode 100644
index 29ec3860..00000000
--- a/gi/pf/itg.cc
+++ /dev/null
@@ -1,275 +0,0 @@
-#include <iostream>
-#include <tr1/memory>
-#include <queue>
-
-#include <boost/functional.hpp>
-#include <boost/program_options.hpp>
-#include <boost/program_options/variables_map.hpp>
-
-#include "viterbi.h"
-#include "hg.h"
-#include "trule.h"
-#include "tdict.h"
-#include "filelib.h"
-#include "dict.h"
-#include "sampler.h"
-#include "ccrp_nt.h"
-#include "ccrp_onetable.h"
-
-using namespace std;
-using namespace tr1;
-namespace po = boost::program_options;
-
-ostream& operator<<(ostream& os, const vector<WordID>& p) {
- os << '[';
- for (int i = 0; i < p.size(); ++i)
- os << (i==0 ? "" : " ") << TD::Convert(p[i]);
- return os << ']';
-}
-
-struct UnigramModel {
- explicit UnigramModel(const string& fname, unsigned vocab_size, double p0null = 0.05) :
- use_uniform_(fname.size() == 0),
- p0null_(p0null),
- uniform_((1.0 - p0null) / vocab_size),
- probs_(TD::NumWords() + 1) {
- if (fname.size() > 0) LoadUnigrams(fname);
- probs_[0] = p0null_;
- }
-
-//
-// \data\
-// ngram 1=9295
-//
-// \1-grams:
-// -3.191193 "
-
- void LoadUnigrams(const string& fname) {
- cerr << "Loading unigram probabilities from " << fname << " ..." << endl;
- ReadFile rf(fname);
- string line;
- istream& in = *rf.stream();
- assert(in);
- getline(in, line);
- assert(line.empty());
- getline(in, line);
- assert(line == "\\data\\");
- getline(in, line);
- size_t pos = line.find("ngram 1=");
- assert(pos == 0);
- assert(line.size() > 8);
- const size_t num_unigrams = atoi(&line[8]);
- getline(in, line);
- assert(line.empty());
- getline(in, line);
- assert(line == "\\1-grams:");
- for (size_t i = 0; i < num_unigrams; ++i) {
- getline(in, line);
- assert(line.size() > 0);
- pos = line.find('\t');
- assert(pos > 0);
- assert(pos + 1 < line.size());
- const WordID w = TD::Convert(line.substr(pos + 1));
- line[pos] = 0;
- float p = atof(&line[0]);
- const prob_t pnon_null(1.0 - p0null_.as_float());
- if (w < probs_.size()) probs_[w].logeq(p * log(10) + log(pnon_null)); else abort();
- }
- }
-
- const prob_t& operator()(const WordID& w) const {
- if (!w) return p0null_;
- if (use_uniform_) return uniform_;
- return probs_[w];
- }
-
- const bool use_uniform_;
- const prob_t p0null_;
- const prob_t uniform_;
- vector<prob_t> probs_;
-};
-
-struct Model1 {
- explicit Model1(const string& fname) :
- kNULL(TD::Convert("<eps>")),
- kZERO() {
- LoadModel1(fname);
- }
-
- void LoadModel1(const string& fname) {
- cerr << "Loading Model 1 parameters from " << fname << " ..." << endl;
- ReadFile rf(fname);
- istream& in = *rf.stream();
- string line;
- unsigned lc = 0;
- while(getline(in, line)) {
- ++lc;
- int cur = 0;
- int start = 0;
- while(cur < line.size() && line[cur] != ' ') { ++cur; }
- assert(cur != line.size());
- line[cur] = 0;
- const WordID src = TD::Convert(&line[0]);
- ++cur;
- start = cur;
- while(cur < line.size() && line[cur] != ' ') { ++cur; }
- assert(cur != line.size());
- line[cur] = 0;
- WordID trg = TD::Convert(&line[start]);
- const double logprob = strtod(&line[cur + 1], NULL);
- if (src >= ttable.size()) ttable.resize(src + 1);
- ttable[src][trg].logeq(logprob);
- }
- cerr << " read " << lc << " parameters.\n";
- }
-
- // returns prob 0 if src or trg is not found!
- const prob_t& operator()(WordID src, WordID trg) const {
- if (src == 0) src = kNULL;
- if (src < ttable.size()) {
- const map<WordID, prob_t>& cpd = ttable[src];
- const map<WordID, prob_t>::const_iterator it = cpd.find(trg);
- if (it != cpd.end())
- return it->second;
- }
- return kZERO;
- }
-
- const WordID kNULL;
- const prob_t kZERO;
- vector<map<WordID, prob_t> > ttable;
-};
-
-void InitCommandLine(int argc, char** argv, po::variables_map* conf) {
- po::options_description opts("Configuration options");
- opts.add_options()
- ("samples,s",po::value<unsigned>()->default_value(1000),"Number of samples")
- ("particles,p",po::value<unsigned>()->default_value(25),"Number of particles")
- ("input,i",po::value<string>(),"Read parallel data from")
- ("model1,m",po::value<string>(),"Model 1 parameters (used in base distribution)")
- ("inverse_model1,M",po::value<string>(),"Inverse Model 1 parameters (used in backward estimate)")
- ("model1_interpolation_weight",po::value<double>()->default_value(0.95),"Mixing proportion of model 1 with uniform target distribution")
- ("src_unigram,u",po::value<string>()->default_value(""),"Source unigram distribution; empty for uniform")
- ("trg_unigram,U",po::value<string>()->default_value(""),"Target unigram distribution; empty for uniform")
- ("random_seed,S",po::value<uint32_t>(), "Random seed");
- po::options_description clo("Command line options");
- clo.add_options()
- ("config", po::value<string>(), "Configuration file")
- ("help,h", "Print this help message and exit");
- po::options_description dconfig_options, dcmdline_options;
- dconfig_options.add(opts);
- dcmdline_options.add(opts).add(clo);
-
- po::store(parse_command_line(argc, argv, dcmdline_options), *conf);
- if (conf->count("config")) {
- ifstream config((*conf)["config"].as<string>().c_str());
- po::store(po::parse_config_file(config, dconfig_options), *conf);
- }
- po::notify(*conf);
-
- if (conf->count("help") || (conf->count("input") == 0)) {
- cerr << dcmdline_options << endl;
- exit(1);
- }
-}
-
-void ReadParallelCorpus(const string& filename,
- vector<vector<WordID> >* f,
- vector<vector<WordID> >* e,
- set<WordID>* vocab_f,
- set<WordID>* vocab_e) {
- f->clear();
- e->clear();
- vocab_f->clear();
- vocab_e->clear();
- istream* in;
- if (filename == "-")
- in = &cin;
- else
- in = new ifstream(filename.c_str());
- assert(*in);
- string line;
- const WordID kDIV = TD::Convert("|||");
- vector<WordID> tmp;
- while(*in) {
- getline(*in, line);
- if (line.empty() && !*in) break;
- e->push_back(vector<int>());
- f->push_back(vector<int>());
- vector<int>& le = e->back();
- vector<int>& lf = f->back();
- tmp.clear();
- TD::ConvertSentence(line, &tmp);
- bool isf = true;
- for (unsigned i = 0; i < tmp.size(); ++i) {
- const int cur = tmp[i];
- if (isf) {
- if (kDIV == cur) { isf = false; } else {
- lf.push_back(cur);
- vocab_f->insert(cur);
- }
- } else {
- assert(cur != kDIV);
- le.push_back(cur);
- vocab_e->insert(cur);
- }
- }
- assert(isf == false);
- }
- if (in != &cin) delete in;
-}
-
-int main(int argc, char** argv) {
- po::variables_map conf;
- InitCommandLine(argc, argv, &conf);
- const unsigned particles = conf["particles"].as<unsigned>();
- const unsigned samples = conf["samples"].as<unsigned>();
- TD::Convert("<s>");
- TD::Convert("</s>");
- TD::Convert("<unk>");
- if (!conf.count("model1")) {
- cerr << argv[0] << "Please use --model1 to specify model 1 parameters\n";
- return 1;
- }
- boost::shared_ptr<MT19937> prng;
- if (conf.count("random_seed"))
- prng.reset(new MT19937(conf["random_seed"].as<uint32_t>()));
- else
- prng.reset(new MT19937);
- MT19937& rng = *prng;
-
- vector<vector<WordID> > corpuse, corpusf;
- set<WordID> vocabe, vocabf;
- cerr << "Reading corpus...\n";
- ReadParallelCorpus(conf["input"].as<string>(), &corpusf, &corpuse, &vocabf, &vocabe);
- cerr << "F-corpus size: " << corpusf.size() << " sentences\t (" << vocabf.size() << " word types)\n";
- cerr << "E-corpus size: " << corpuse.size() << " sentences\t (" << vocabe.size() << " word types)\n";
- assert(corpusf.size() == corpuse.size());
- UnigramModel src_unigram(conf["src_unigram"].as<string>(), vocabf.size());
- UnigramModel trg_unigram(conf["trg_unigram"].as<string>(), vocabe.size());
- const prob_t kHALF(0.5);
-
- const string kEMPTY = "NULL";
- const int kLHS = -TD::Convert("X");
- Model1 m1(conf["model1"].as<string>());
- Model1 invm1(conf["inverse_model1"].as<string>());
- for (int si = 0; si < conf["samples"].as<unsigned>(); ++si) {
- cerr << '.' << flush;
- for (int ci = 0; ci < corpusf.size(); ++ci) {
- const vector<WordID>& trg = corpuse[ci];
- const vector<WordID>& src = corpusf[ci];
- for (int i = 0; i <= trg.size(); ++i) {
- const WordID e_i = i > 0 ? trg[i-1] : 0;
- for (int j = 0; j <= src.size(); ++j) {
- const WordID f_j = j > 0 ? src[j-1] : 0;
- if (e_i == 0 && f_j == 0) continue;
- prob_t je = kHALF * src_unigram(f_j) * m1(f_j,e_i) + kHALF * trg_unigram(e_i) * invm1(e_i,f_j);
- cerr << "p( " << (e_i ? TD::Convert(e_i) : kEMPTY) << " , " << (f_j ? TD::Convert(f_j) : kEMPTY) << " ) = " << log(je) << endl;
- if (e_i && f_j)
- cout << "[X] ||| " << TD::Convert(f_j) << " ||| " << TD::Convert(e_i) << " ||| LogProb=" << log(je) << endl;
- }
- }
- }
- }
-}
-