summaryrefslogtreecommitdiff
path: root/dtrain
diff options
context:
space:
mode:
authorAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
committerAvneesh Saluja <asaluja@gmail.com>2013-03-28 18:28:16 -0700
commit3d8d656fa7911524e0e6885647173474524e0784 (patch)
tree81b1ee2fcb67980376d03f0aa48e42e53abff222 /dtrain
parentbe7f57fdd484e063775d7abf083b9fa4c403b610 (diff)
parent96fedabebafe7a38a6d5928be8fff767e411d705 (diff)
fixed conflicts
Diffstat (limited to 'dtrain')
-rw-r--r--dtrain/Makefile.am7
-rw-r--r--dtrain/README.md48
-rw-r--r--dtrain/dtrain.cc657
-rw-r--r--dtrain/dtrain.h98
-rwxr-xr-xdtrain/hstreaming/avg.rb32
-rw-r--r--dtrain/hstreaming/cdec.ini22
-rw-r--r--dtrain/hstreaming/dtrain.ini15
-rwxr-xr-xdtrain/hstreaming/dtrain.sh9
-rwxr-xr-xdtrain/hstreaming/hadoop-streaming-job.sh30
-rwxr-xr-xdtrain/hstreaming/lplp.rb131
-rw-r--r--dtrain/hstreaming/red-test9
-rw-r--r--dtrain/kbestget.h152
-rw-r--r--dtrain/ksampler.h61
-rw-r--r--dtrain/pairsampling.h149
-rw-r--r--dtrain/score.cc254
-rw-r--r--dtrain/score.h212
-rw-r--r--dtrain/test/example/README8
-rw-r--r--dtrain/test/example/cdec.ini24
-rw-r--r--dtrain/test/example/dtrain.ini22
-rw-r--r--dtrain/test/example/expected-output125
-rw-r--r--dtrain/test/toy/cdec.ini2
-rw-r--r--dtrain/test/toy/dtrain.ini12
-rw-r--r--dtrain/test/toy/input2
23 files changed, 0 insertions, 2081 deletions
diff --git a/dtrain/Makefile.am b/dtrain/Makefile.am
deleted file mode 100644
index 64fef489..00000000
--- a/dtrain/Makefile.am
+++ /dev/null
@@ -1,7 +0,0 @@
-bin_PROGRAMS = dtrain
-
-dtrain_SOURCES = dtrain.cc score.cc
-dtrain_LDADD = $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a ../klm/lm/libklm.a ../klm/util/libklm_util.a -lz
-
-AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
-
diff --git a/dtrain/README.md b/dtrain/README.md
deleted file mode 100644
index 7edabbf1..00000000
--- a/dtrain/README.md
+++ /dev/null
@@ -1,48 +0,0 @@
-This is a simple (and parallelizable) tuning method for cdec
-which is able to train the weights of very many (sparse) features.
-It was used here:
- "Joint Feature Selection in Distributed Stochastic
- Learning for Large-Scale Discriminative Training in
- SMT"
-(Simianer, Riezler, Dyer; ACL 2012)
-
-
-Building
---------
-Builds when building cdec, see ../BUILDING .
-To build only parts needed for dtrain do
-```
- autoreconf -ifv
- ./configure [--disable-gtest]
- cd dtrain/; make
-```
-
-Running
--------
-To run this on a dev set locally:
-```
- #define DTRAIN_LOCAL
-```
-otherwise remove that line or undef, then recompile. You need a single
-grammar file or input annotated with per-sentence grammars (psg) as you
-would use with cdec. Additionally you need to give dtrain a file with
-references (--refs) when running locally.
-
-The input for use with hadoop streaming looks like this:
-```
- <sid>\t<source>\t<ref>\t<grammar rules separated by \t>
-```
-To convert a psg to this format you need to replace all "\n"
-by "\t". Make sure there are no tabs in your data.
-
-For an example of local usage (with the 'distributed' format)
-the see test/example/ . This expects dtrain to be built without
-DTRAIN_LOCAL.
-
-Legal
------
-Copyright (c) 2012 by Patrick Simianer <p@simianer.de>
-
-See the file ../LICENSE.txt for the licensing terms that this software is
-released under.
-
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc
deleted file mode 100644
index b7a4bb6f..00000000
--- a/dtrain/dtrain.cc
+++ /dev/null
@@ -1,657 +0,0 @@
-#include "dtrain.h"
-
-
-bool
-dtrain_init(int argc, char** argv, po::variables_map* cfg)
-{
- po::options_description ini("Configuration File Options");
- ini.add_options()
- ("input", po::value<string>()->default_value("-"), "input file")
- ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT")
- ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)")
- ("decoder_config", po::value<string>(), "configuration file for cdec")
- ("print_weights", po::value<string>(), "weights to print on each iteration")
- ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences")
- ("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use")
- ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration")
- ("hstreaming", po::value<string>(), "run in hadoop streaming mode, arg is a task id")
- ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)")
- ("k", po::value<unsigned>()->default_value(100), "how many translations to sample")
- ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'")
- ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'")
- ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'")
- ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5")
- ("pair_threshold", po::value<score_t>()->default_value(0.), "bleu [0,1] threshold to filter pairs")
- ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)")
- ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_")
- ("learning_rate", po::value<weight_t>()->default_value(0.0001), "learning rate")
- ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)")
- ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)")
- ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input")
- ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010)")
- ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength")
- ("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPL") // TODO
- ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU")
- ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair")
- ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near")
- ("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.")
-#ifdef DTRAIN_LOCAL
- ("refs,r", po::value<string>(), "references in local mode")
-#endif
- ("noup", po::value<bool>()->zero_tokens(), "do not update weights");
- po::options_description cl("Command Line Options");
- cl.add_options()
- ("config,c", po::value<string>(), "dtrain config file")
- ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet")
- ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose");
- cl.add(ini);
- po::store(parse_command_line(argc, argv, cl), *cfg);
- if (cfg->count("config")) {
- ifstream ini_f((*cfg)["config"].as<string>().c_str());
- po::store(po::parse_config_file(ini_f, ini), *cfg);
- }
- po::notify(*cfg);
- if (!cfg->count("decoder_config")) {
- cerr << cl << endl;
- return false;
- }
- if (cfg->count("hstreaming") && (*cfg)["output"].as<string>() != "-") {
- cerr << "When using 'hstreaming' the 'output' param should be '-'." << endl;
- return false;
- }
-#ifdef DTRAIN_LOCAL
- if ((*cfg)["input"].as<string>() == "-") {
- cerr << "Can't use stdin as input with this binary. Recompile without DTRAIN_LOCAL" << endl;
- return false;
- }
-#endif
- if ((*cfg)["sample_from"].as<string>() != "kbest"
- && (*cfg)["sample_from"].as<string>() != "forest") {
- cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as<string>() << "', use 'kbest' or 'forest'." << endl;
- return false;
- }
- if ((*cfg)["sample_from"].as<string>() == "kbest" && (*cfg)["filter"].as<string>() != "uniq" &&
- (*cfg)["filter"].as<string>() != "not") {
- cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as<string>() << "', use 'uniq' or 'not'." << endl;
- return false;
- }
- if ((*cfg)["pair_sampling"].as<string>() != "all" && (*cfg)["pair_sampling"].as<string>() != "XYX" &&
- (*cfg)["pair_sampling"].as<string>() != "PRO") {
- cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "'." << endl;
- return false;
- }
- if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") {
- cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl;
- }
- if((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) {
- cerr << "hi_lo must lie in [0.01, 0.5]" << endl;
- return false;
- }
- if ((*cfg)["pair_threshold"].as<score_t>() < 0) {
- cerr << "The threshold must be >= 0!" << endl;
- return false;
- }
- if ((*cfg)["select_weights"].as<string>() != "last" && (*cfg)["select_weights"].as<string>() != "best" &&
- (*cfg)["select_weights"].as<string>() != "avg" && (*cfg)["select_weights"].as<string>() != "VOID") {
- cerr << "Wrong 'select_weights' param: '" << (*cfg)["select_weights"].as<string>() << "', use 'last' or 'best'." << endl;
- return false;
- }
- return true;
-}
-
-int
-main(int argc, char** argv)
-{
- // handle most parameters
- po::variables_map cfg;
- if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong
- bool quiet = false;
- if (cfg.count("quiet")) quiet = true;
- bool verbose = false;
- if (cfg.count("verbose")) verbose = true;
- bool noup = false;
- if (cfg.count("noup")) noup = true;
- bool hstreaming = false;
- string task_id;
- if (cfg.count("hstreaming")) {
- hstreaming = true;
- quiet = true;
- task_id = cfg["hstreaming"].as<string>();
- cerr.precision(17);
- }
- bool rescale = false;
- if (cfg.count("rescale")) rescale = true;
- HSReporter rep(task_id);
- bool keep = false;
- if (cfg.count("keep")) keep = true;
-
- const unsigned k = cfg["k"].as<unsigned>();
- const unsigned N = cfg["N"].as<unsigned>();
- const unsigned T = cfg["epochs"].as<unsigned>();
- const unsigned stop_after = cfg["stop_after"].as<unsigned>();
- const string filter_type = cfg["filter"].as<string>();
- const string sample_from = cfg["sample_from"].as<string>();
- const string pair_sampling = cfg["pair_sampling"].as<string>();
- const score_t pair_threshold = cfg["pair_threshold"].as<score_t>();
- const string select_weights = cfg["select_weights"].as<string>();
- const float hi_lo = cfg["hi_lo"].as<float>();
- const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>();
- const unsigned max_pairs = cfg["max_pairs"].as<unsigned>();
- weight_t loss_margin = cfg["loss_margin"].as<weight_t>();
- if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max();
- bool scale_bleu_diff = false;
- if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true;
- bool average = false;
- if (select_weights == "avg")
- average = true;
- vector<string> print_weights;
- if (cfg.count("print_weights"))
- boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" "));
-
- // setup decoder
- register_feature_functions();
- SetSilent(true);
- ReadFile ini_rf(cfg["decoder_config"].as<string>());
- if (!quiet)
- cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
- Decoder decoder(ini_rf.stream());
-
- // scoring metric/scorer
- string scorer_str = cfg["scorer"].as<string>();
- LocalScorer* scorer;
- if (scorer_str == "bleu") {
- scorer = dynamic_cast<BleuScorer*>(new BleuScorer);
- } else if (scorer_str == "stupid_bleu") {
- scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer);
- } else if (scorer_str == "smooth_bleu") {
- scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer);
- } else if (scorer_str == "sum_bleu") {
- scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer);
- } else if (scorer_str == "sumexp_bleu") {
- scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer);
- } else if (scorer_str == "sumwhatever_bleu") {
- scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer);
- } else if (scorer_str == "approx_bleu") {
- scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d));
- } else if (scorer_str == "lc_bleu") {
- scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N));
- } else {
- cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl;
- exit(1);
- }
- vector<score_t> bleu_weights;
- scorer->Init(N, bleu_weights);
-
- // setup decoder observer
- MT19937 rng; // random number generator, only for forest sampling
- HypSampler* observer;
- if (sample_from == "kbest")
- observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type));
- else
- observer = dynamic_cast<KSampler*>(new KSampler(k, &rng));
- observer->SetScorer(scorer);
-
- // init weights
- vector<weight_t>& dense_weights = decoder.CurrentWeightVector();
- SparseVector<weight_t> lambdas, cumulative_penalties, w_average;
- if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights);
- Weights::InitSparseVector(dense_weights, &lambdas);
-
- // meta params for perceptron, SVM
- weight_t eta = cfg["learning_rate"].as<weight_t>();
- weight_t gamma = cfg["gamma"].as<weight_t>();
-
- // l1 regularization
- bool l1naive = false;
- bool l1clip = false;
- bool l1cumul = false;
- weight_t l1_reg = 0;
- if (cfg["l1_reg"].as<string>() != "none") {
- string s = cfg["l1_reg"].as<string>();
- if (s == "naive") l1naive = true;
- else if (s == "clip") l1clip = true;
- else if (s == "cumul") l1cumul = true;
- l1_reg = cfg["l1_reg_strength"].as<weight_t>();
- }
-
- // output
- string output_fn = cfg["output"].as<string>();
- // input
- string input_fn = cfg["input"].as<string>();
- ReadFile input(input_fn);
- // buffer input for t > 0
- vector<string> src_str_buf; // source strings (decoder takes only strings)
- vector<vector<WordID> > ref_ids_buf; // references as WordID vecs
- // where temp files go
- string tmp_path = cfg["tmp"].as<string>();
-#ifdef DTRAIN_LOCAL
- string refs_fn = cfg["refs"].as<string>();
- ReadFile refs(refs_fn);
-#else
- string grammar_buf_fn = gettmpf(tmp_path, "dtrain-grammars");
- ogzstream grammar_buf_out;
- grammar_buf_out.open(grammar_buf_fn.c_str());
-#endif
-
- unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size
- vector<pair<score_t, score_t> > all_scores;
- score_t max_score = 0.;
- unsigned best_it = 0;
- float overall_time = 0.;
-
- // output cfg
- if (!quiet) {
- cerr << _p5;
- cerr << endl << "dtrain" << endl << "Parameters:" << endl;
- cerr << setw(25) << "k " << k << endl;
- cerr << setw(25) << "N " << N << endl;
- cerr << setw(25) << "T " << T << endl;
- cerr << setw(25) << "scorer '" << scorer_str << "'" << endl;
- if (scorer_str == "approx_bleu")
- cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl;
- cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl;
- if (sample_from == "kbest")
- cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl;
- if (!scale_bleu_diff) cerr << setw(25) << "learning rate " << eta << endl;
- else cerr << setw(25) << "learning rate " << "bleu diff" << endl;
- cerr << setw(25) << "gamma " << gamma << endl;
- cerr << setw(25) << "loss margin " << loss_margin << endl;
- cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl;
- if (pair_sampling == "XYX")
- cerr << setw(25) << "hi lo " << hi_lo << endl;
- cerr << setw(25) << "pair threshold " << pair_threshold << endl;
- cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl;
- if (cfg.count("l1_reg"))
- cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl;
- if (rescale)
- cerr << setw(25) << "rescale " << rescale << endl;
- cerr << setw(25) << "max pairs " << max_pairs << endl;
- cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl;
- cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
-#ifdef DTRAIN_LOCAL
- cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl;
-#endif
- cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
- if (cfg.count("input_weights"))
- cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as<string>() << "'" << endl;
- if (stop_after > 0)
- cerr << setw(25) << "stop_after " << stop_after << endl;
- if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl;
- }
-
-
- for (unsigned t = 0; t < T; t++) // T epochs
- {
-
- if (hstreaming) cerr << "reporter:status:Iteration #" << t+1 << " of " << T << endl;
-
- time_t start, end;
- time(&start);
-#ifndef DTRAIN_LOCAL
- igzstream grammar_buf_in;
- if (t > 0) grammar_buf_in.open(grammar_buf_fn.c_str());
-#endif
- score_t score_sum = 0.;
- score_t model_sum(0);
- unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0;
- if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
-
- while(true)
- {
-
- string in;
- bool next = false, stop = false; // next iteration or premature stop
- if (t == 0) {
- if(!getline(*input, in)) next = true;
- } else {
- if (ii == in_sz) next = true; // stop if we reach the end of our input
- }
- // stop after X sentences (but still go on for those)
- if (stop_after > 0 && stop_after == ii && !next) stop = true;
-
- // produce some pretty output
- if (!quiet && !verbose) {
- if (ii == 0) cerr << " ";
- if ((ii+1) % (DTRAIN_DOTS) == 0) {
- cerr << ".";
- cerr.flush();
- }
- if ((ii+1) % (20*DTRAIN_DOTS) == 0) {
- cerr << " " << ii+1 << endl;
- if (!next && !stop) cerr << " ";
- }
- if (stop) {
- if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
- cerr << "Stopping after " << stop_after << " input sentences." << endl;
- } else {
- if (next) {
- if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl;
- }
- }
- }
-
- // next iteration
- if (next || stop) break;
-
- // weights
- lambdas.init_vector(&dense_weights);
-
- // getting input
- vector<WordID> ref_ids; // reference as vector<WordID>
-#ifndef DTRAIN_LOCAL
- vector<string> in_split; // input: sid\tsrc\tref\tpsg
- if (t == 0) {
- // handling input
- split_in(in, in_split);
- if (hstreaming && ii == 0) cerr << "reporter:counter:" << task_id << ",First ID," << in_split[0] << endl;
- // getting reference
- vector<string> ref_tok;
- boost::split(ref_tok, in_split[2], boost::is_any_of(" "));
- register_and_convert(ref_tok, ref_ids);
- ref_ids_buf.push_back(ref_ids);
- // process and set grammar
- bool broken_grammar = true; // ignore broken grammars
- for (string::iterator it = in.begin(); it != in.end(); it++) {
- if (!isspace(*it)) {
- broken_grammar = false;
- break;
- }
- }
- if (broken_grammar) {
- cerr << "Broken grammar for " << ii+1 << "! Ignoring this input." << endl;
- continue;
- }
- boost::replace_all(in, "\t", "\n");
- in += "\n";
- grammar_buf_out << in << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl;
- decoder.AddSupplementalGrammarFromString(in);
- src_str_buf.push_back(in_split[1]);
- // decode
- observer->SetRef(ref_ids);
- decoder.Decode(in_split[1], observer);
- } else {
- // get buffered grammar
- string grammar_str;
- while (true) {
- string rule;
- getline(grammar_buf_in, rule);
- if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break;
- grammar_str += rule + "\n";
- }
- decoder.AddSupplementalGrammarFromString(grammar_str);
- // decode
- observer->SetRef(ref_ids_buf[ii]);
- decoder.Decode(src_str_buf[ii], observer);
- }
-#else
- if (t == 0) {
- string r_;
- getline(*refs, r_);
- vector<string> ref_tok;
- boost::split(ref_tok, r_, boost::is_any_of(" "));
- register_and_convert(ref_tok, ref_ids);
- ref_ids_buf.push_back(ref_ids);
- src_str_buf.push_back(in);
- } else {
- ref_ids = ref_ids_buf[ii];
- }
- observer->SetRef(ref_ids);
- if (t == 0)
- decoder.Decode(in, observer);
- else
- decoder.Decode(src_str_buf[ii], observer);
-#endif
-
- // get (scored) samples
- vector<ScoredHyp>* samples = observer->GetSamples();
-
- if (verbose) {
- cerr << "--- ref for " << ii << ": ";
- if (t > 0) printWordIDVec(ref_ids_buf[ii]);
- else printWordIDVec(ref_ids);
- cerr << endl;
- for (unsigned u = 0; u < samples->size(); u++) {
- cerr << _p2 << _np << "[" << u << ". '";
- printWordIDVec((*samples)[u].w);
- cerr << "'" << endl;
- cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl;
- cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl;
- }
- }
-
- score_sum += (*samples)[0].score; // stats for 1best
- model_sum += (*samples)[0].model;
-
- f_count += observer->get_f_count();
- list_sz += observer->get_sz();
-
- // weight updates
- if (!noup) {
- // get pairs
- vector<pair<ScoredHyp,ScoredHyp> > pairs;
- if (pair_sampling == "all")
- all_pairs(samples, pairs, pair_threshold, max_pairs);
- if (pair_sampling == "XYX")
- partXYX(samples, pairs, pair_threshold, max_pairs, hi_lo);
- if (pair_sampling == "PRO")
- PROsampling(samples, pairs, pair_threshold, max_pairs);
- npairs += pairs.size();
-
- for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin();
- it != pairs.end(); it++) {
-#ifdef DTRAIN_FASTER_PERCEPTRON
- bool rank_error = true; // pair sampling already did this for us
- rank_errors++;
- score_t margin = std::numeric_limits<float>::max();
-#else
- bool rank_error = it->first.model <= it->second.model;
- if (rank_error) rank_errors++;
- score_t margin = fabs(fabs(it->first.model) - fabs(it->second.model));
- if (!rank_error && margin < loss_margin) margin_violations++;
-#endif
- if (scale_bleu_diff) eta = it->first.score - it->second.score;
- if (rank_error || margin < loss_margin) {
- SparseVector<weight_t> diff_vec = it->first.f - it->second.f;
- lambdas.plus_eq_v_times_s(diff_vec, eta);
- if (gamma)
- lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
- }
- }
-
- // l1 regularization
- if (l1naive) {
- for (unsigned d = 0; d < lambdas.size(); d++) {
- weight_t v = lambdas.get(d);
- lambdas.set_value(d, v - sign(v) * l1_reg);
- }
- } else if (l1clip) {
- for (unsigned d = 0; d < lambdas.size(); d++) {
- if (lambdas.nonzero(d)) {
- weight_t v = lambdas.get(d);
- if (v > 0) {
- lambdas.set_value(d, max(0., v - l1_reg));
- } else {
- lambdas.set_value(d, min(0., v + l1_reg));
- }
- }
- }
- } else if (l1cumul) {
- weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input
- for (unsigned d = 0; d < lambdas.size(); d++) {
- if (lambdas.nonzero(d)) {
- weight_t v = lambdas.get(d);
- weight_t penalty = 0;
- if (v > 0) {
- penalty = max(0., v-(acc_penalty + cumulative_penalties.get(d)));
- } else {
- penalty = min(0., v+(acc_penalty - cumulative_penalties.get(d)));
- }
- lambdas.set_value(d, penalty);
- cumulative_penalties.set_value(d, cumulative_penalties.get(d)+penalty);
- }
- }
- }
-
- }
-
- if (rescale) lambdas /= lambdas.l2norm();
-
- ++ii;
-
- if (hstreaming) {
- rep.update_counter("Seen #"+boost::lexical_cast<string>(t+1), 1u);
- rep.update_counter("Seen", 1u);
- }
-
- } // input loop
-
- if (average) w_average += lambdas;
-
- if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset();
-
- if (t == 0) {
- in_sz = ii; // remember size of input (# lines)
- if (hstreaming) {
- rep.update_counter("|Input|", ii);
- rep.update_gcounter("|Input|", ii);
- rep.update_gcounter("Shards", 1u);
- }
- }
-
-#ifndef DTRAIN_LOCAL
- if (t == 0) {
- grammar_buf_out.close();
- } else {
- grammar_buf_in.close();
- }
-#endif
-
- // print some stats
- score_t score_avg = score_sum/(score_t)in_sz;
- score_t model_avg = model_sum/(score_t)in_sz;
- score_t score_diff, model_diff;
- if (t > 0) {
- score_diff = score_avg - all_scores[t-1].first;
- model_diff = model_avg - all_scores[t-1].second;
- } else {
- score_diff = score_avg;
- model_diff = model_avg;
- }
-
- unsigned nonz = 0;
- if (!quiet || hstreaming) nonz = (unsigned)lambdas.num_nonzero();
-
- if (!quiet) {
- cerr << _p5 << _p << "WEIGHTS" << endl;
- for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) {
- cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl;
- }
- cerr << " ---" << endl;
- cerr << _np << " 1best avg score: " << score_avg;
- cerr << _p << " (" << score_diff << ")" << endl;
- cerr << _np << " 1best avg model score: " << model_avg;
- cerr << _p << " (" << model_diff << ")" << endl;
- cerr << " avg # pairs: ";
- cerr << _np << npairs/(float)in_sz << endl;
- cerr << " avg # rank err: ";
- cerr << rank_errors/(float)in_sz << endl;
-#ifndef DTRAIN_FASTER_PERCEPTRON
- cerr << " avg # margin viol: ";
- cerr << margin_violations/(float)in_sz << endl;
-#endif
- cerr << " non0 feature count: " << nonz << endl;
- cerr << " avg list sz: " << list_sz/(float)in_sz << endl;
- cerr << " avg f count: " << f_count/(float)list_sz << endl;
- }
-
- if (hstreaming) {
- rep.update_counter("Score 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(score_avg*DTRAIN_SCALE));
- rep.update_counter("Model 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(model_avg*DTRAIN_SCALE));
- rep.update_counter("Pairs avg #"+boost::lexical_cast<string>(t+1), (unsigned)((npairs/(weight_t)in_sz)*DTRAIN_SCALE));
- rep.update_counter("Rank errors avg #"+boost::lexical_cast<string>(t+1), (unsigned)((rank_errors/(weight_t)in_sz)*DTRAIN_SCALE));
- rep.update_counter("Margin violations avg #"+boost::lexical_cast<string>(t+1), (unsigned)((margin_violations/(weight_t)in_sz)*DTRAIN_SCALE));
- rep.update_counter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);
- rep.update_gcounter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz);
- }
-
- pair<score_t,score_t> remember;
- remember.first = score_avg;
- remember.second = model_avg;
- all_scores.push_back(remember);
- if (score_avg > max_score) {
- max_score = score_avg;
- best_it = t;
- }
- time (&end);
- float time_diff = difftime(end, start);
- overall_time += time_diff;
- if (!quiet) {
- cerr << _p2 << _np << "(time " << time_diff/60. << " min, ";
- cerr << time_diff/in_sz << " s/S)" << endl;
- }
- if (t+1 != T && !quiet) cerr << endl;
-
- if (noup) break;
-
- // write weights to file
- if (select_weights == "best" || keep) {
- lambdas.init_vector(&dense_weights);
- string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz";
- Weights::WriteToFile(w_fn, dense_weights, true);
- }
-
- } // outer loop
-
- if (average) w_average /= (weight_t)T;
-
-#ifndef DTRAIN_LOCAL
- unlink(grammar_buf_fn.c_str());
-#endif
-
- if (!noup) {
- if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl;
- if (select_weights == "last" || average) { // last, average
- WriteFile of(output_fn); // works with '-'
- ostream& o = *of.stream();
- o.precision(17);
- o << _np;
- if (average) {
- for (SparseVector<weight_t>::iterator it = w_average.begin(); it != w_average.end(); ++it) {
- if (it->second == 0) continue;
- o << FD::Convert(it->first) << '\t' << it->second << endl;
- }
- } else {
- for (SparseVector<weight_t>::iterator it = lambdas.begin(); it != lambdas.end(); ++it) {
- if (it->second == 0) continue;
- o << FD::Convert(it->first) << '\t' << it->second << endl;
- }
- }
- } else if (select_weights == "VOID") { // do nothing with the weights
- } else { // best
- if (output_fn != "-") {
- CopyFile("weights."+boost::lexical_cast<string>(best_it)+".gz", output_fn);
- } else {
- ReadFile bestw("weights."+boost::lexical_cast<string>(best_it)+".gz");
- string o;
- cout.precision(17);
- cout << _np;
- while(getline(*bestw, o)) cout << o << endl;
- }
- if (!keep) {
- for (unsigned i = 0; i < T; i++) {
- string s = "weights." + boost::lexical_cast<string>(i) + ".gz";
- unlink(s.c_str());
- }
- }
- }
- if (output_fn == "-" && hstreaming) cout << "__SHARD_COUNT__\t1" << endl;
- if (!quiet) cerr << "done" << endl;
- }
-
- if (!quiet) {
- cerr << _p5 << _np << endl << "---" << endl << "Best iteration: ";
- cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl;
- cerr << "This took " << overall_time/60. << " min." << endl;
- }
-}
-
diff --git a/dtrain/dtrain.h b/dtrain/dtrain.h
deleted file mode 100644
index 7e084a79..00000000
--- a/dtrain/dtrain.h
+++ /dev/null
@@ -1,98 +0,0 @@
-#ifndef _DTRAIN_H_
-#define _DTRAIN_H_
-
-#undef DTRAIN_FASTER_PERCEPTRON // only look at misranked pairs
- // DO NOT USE WITH SVM!
-#define DTRAIN_LOCAL
-#define DTRAIN_DOTS 10 // after how many inputs to display a '.'
-#define DTRAIN_GRAMMAR_DELIM "########EOS########"
-#define DTRAIN_SCALE 100000
-
-
-#include <iomanip>
-#include <climits>
-#include <string.h>
-
-#include <boost/algorithm/string.hpp>
-#include <boost/program_options.hpp>
-
-#include "ksampler.h"
-#include "pairsampling.h"
-
-#include "filelib.h"
-
-
-
-using namespace std;
-using namespace dtrain;
-namespace po = boost::program_options;
-
-inline void register_and_convert(const vector<string>& strs, vector<WordID>& ids)
-{
- vector<string>::const_iterator it;
- for (it = strs.begin(); it < strs.end(); it++)
- ids.push_back(TD::Convert(*it));
-}
-
-inline string gettmpf(const string path, const string infix)
-{
- char fn[path.size() + infix.size() + 8];
- strcpy(fn, path.c_str());
- strcat(fn, "/");
- strcat(fn, infix.c_str());
- strcat(fn, "-XXXXXX");
- if (!mkstemp(fn)) {
- cerr << "Cannot make temp file in" << path << " , exiting." << endl;
- exit(1);
- }
- return string(fn);
-}
-
-inline void split_in(string& s, vector<string>& parts)
-{
- unsigned f = 0;
- for(unsigned i = 0; i < 3; i++) {
- unsigned e = f;
- f = s.find("\t", f+1);
- if (e != 0) parts.push_back(s.substr(e+1, f-e-1));
- else parts.push_back(s.substr(0, f));
- }
- s.erase(0, f+1);
-}
-
-struct HSReporter
-{
- string task_id_;
-
- HSReporter(string task_id) : task_id_(task_id) {}
-
- inline void update_counter(string name, unsigned amount) {
- cerr << "reporter:counter:" << task_id_ << "," << name << "," << amount << endl;
- }
- inline void update_gcounter(string name, unsigned amount) {
- cerr << "reporter:counter:Global," << name << "," << amount << endl;
- }
-};
-
-inline ostream& _np(ostream& out) { return out << resetiosflags(ios::showpos); }
-inline ostream& _p(ostream& out) { return out << setiosflags(ios::showpos); }
-inline ostream& _p2(ostream& out) { return out << setprecision(2); }
-inline ostream& _p5(ostream& out) { return out << setprecision(5); }
-
-inline void printWordIDVec(vector<WordID>& v)
-{
- for (unsigned i = 0; i < v.size(); i++) {
- cerr << TD::Convert(v[i]);
- if (i < v.size()-1) cerr << " ";
- }
-}
-
-template<typename T>
-inline T sign(T z)
-{
- if (z == 0) return 0;
- return z < 0 ? -1 : +1;
-}
-
-#endif
-
diff --git a/dtrain/hstreaming/avg.rb b/dtrain/hstreaming/avg.rb
deleted file mode 100755
index 2599c732..00000000
--- a/dtrain/hstreaming/avg.rb
+++ /dev/null
@@ -1,32 +0,0 @@
-#!/usr/bin/env ruby
-# first arg may be an int of custom shard count
-
-shard_count_key = "__SHARD_COUNT__"
-
-STDIN.set_encoding 'utf-8'
-STDOUT.set_encoding 'utf-8'
-
-w = {}
-c = {}
-w.default = 0
-c.default = 0
-while line = STDIN.gets
- key, val = line.split /\s/
- w[key] += val.to_f
- c[key] += 1
-end
-
-if ARGV.size == 0
- shard_count = w["__SHARD_COUNT__"]
-else
- shard_count = ARGV[0].to_f
-end
-w.each_key { |k|
- if k == shard_count_key
- next
- else
- puts "#{k}\t#{w[k]/shard_count}"
- #puts "# #{c[k]}"
- end
-}
-
diff --git a/dtrain/hstreaming/cdec.ini b/dtrain/hstreaming/cdec.ini
deleted file mode 100644
index d4f5cecd..00000000
--- a/dtrain/hstreaming/cdec.ini
+++ /dev/null
@@ -1,22 +0,0 @@
-formalism=scfg
-add_pass_through_rules=true
-scfg_max_span_limit=15
-intersection_strategy=cube_pruning
-cubepruning_pop_limit=30
-feature_function=WordPenalty
-feature_function=KLanguageModel nc-wmt11.en.srilm.gz
-#feature_function=ArityPenalty
-#feature_function=CMR2008ReorderingFeatures
-#feature_function=Dwarf
-#feature_function=InputIndicator
-#feature_function=LexNullJump
-#feature_function=NewJump
-#feature_function=NgramFeatures
-#feature_function=NonLatinCount
-#feature_function=OutputIndicator
-#feature_function=RuleIdentityFeatures
-#feature_function=RuleNgramFeatures
-#feature_function=RuleShape
-#feature_function=SourceSpanSizeFeatures
-#feature_function=SourceWordPenalty
-#feature_function=SpanFeatures
diff --git a/dtrain/hstreaming/dtrain.ini b/dtrain/hstreaming/dtrain.ini
deleted file mode 100644
index a2c219a1..00000000
--- a/dtrain/hstreaming/dtrain.ini
+++ /dev/null
@@ -1,15 +0,0 @@
-input=-
-output=-
-decoder_config=cdec.ini
-tmp=/var/hadoop/mapred/local/
-epochs=1
-k=100
-N=4
-learning_rate=0.0001
-gamma=0
-scorer=stupid_bleu
-sample_from=kbest
-filter=uniq
-pair_sampling=XYX
-pair_threshold=0
-select_weights=last
diff --git a/dtrain/hstreaming/dtrain.sh b/dtrain/hstreaming/dtrain.sh
deleted file mode 100755
index 877ff94c..00000000
--- a/dtrain/hstreaming/dtrain.sh
+++ /dev/null
@@ -1,9 +0,0 @@
-#!/bin/bash
-# script to run dtrain with a task id
-
-pushd . &>/dev/null
-cd ..
-ID=$(basename $(pwd)) # attempt_...
-popd &>/dev/null
-./dtrain -c dtrain.ini --hstreaming $ID
-
diff --git a/dtrain/hstreaming/hadoop-streaming-job.sh b/dtrain/hstreaming/hadoop-streaming-job.sh
deleted file mode 100755
index 92419956..00000000
--- a/dtrain/hstreaming/hadoop-streaming-job.sh
+++ /dev/null
@@ -1,30 +0,0 @@
-#!/bin/sh
-
-EXP=a_simple_test
-
-# change these vars to fit your hadoop installation
-HADOOP_HOME=/usr/lib/hadoop-0.20
-JAR=contrib/streaming/hadoop-streaming-0.20.2-cdh3u1.jar
-HSTREAMING="$HADOOP_HOME/bin/hadoop jar $HADOOP_HOME/$JAR"
-
- IN=input_on_hdfs
-OUT=output_weights_on_hdfs
-
-# you can -reducer to NONE if you want to
-# do feature selection/averaging locally (e.g. to
-# keep weights of all epochs)
-$HSTREAMING \
- -mapper "dtrain.sh" \
- -reducer "ruby lplp.rb l2 select_k 100000" \
- -input $IN \
- -output $OUT \
- -file dtrain.sh \
- -file lplp.rb \
- -file ../dtrain \
- -file dtrain.ini \
- -file cdec.ini \
- -file ../test/example/nc-wmt11.en.srilm.gz \
- -jobconf mapred.reduce.tasks=30 \
- -jobconf mapred.max.map.failures.percent=0 \
- -jobconf mapred.job.name="dtrain $EXP"
-
diff --git a/dtrain/hstreaming/lplp.rb b/dtrain/hstreaming/lplp.rb
deleted file mode 100755
index f0cd58c5..00000000
--- a/dtrain/hstreaming/lplp.rb
+++ /dev/null
@@ -1,131 +0,0 @@
-# lplp.rb
-
-# norms
-def l0(feature_column, n)
- if feature_column.size >= n then return 1 else return 0 end
-end
-
-def l1(feature_column, n=-1)
- return feature_column.map { |i| i.abs }.reduce { |sum,i| sum+i }
-end
-
-def l2(feature_column, n=-1)
- return Math.sqrt feature_column.map { |i| i.abs2 }.reduce { |sum,i| sum+i }
-end
-
-def linfty(feature_column, n=-1)
- return feature_column.map { |i| i.abs }.max
-end
-
-# stats
-def median(feature_column, n)
- return feature_column.concat(0.step(n-feature_column.size-1).map{|i|0}).sort[feature_column.size/2]
-end
-
-def mean(feature_column, n)
- return feature_column.reduce { |sum, i| sum+i } / n
-end
-
-# selection
-def select_k(weights, norm_fun, n, k=10000)
- weights.sort{|a,b| norm_fun.call(b[1], n) <=> norm_fun.call(a[1], n)}.each { |p|
- puts "#{p[0]}\t#{mean(p[1], n)}"
- k -= 1
- if k == 0 then break end
- }
-end
-
-def cut(weights, norm_fun, n, epsilon=0.0001)
- weights.each { |k,v|
- if norm_fun.call(v, n).abs >= epsilon
- puts "#{k}\t#{mean(v, n)}"
- end
- }
-end
-
-# test
-def _test()
- puts
- w = {}
- w["a"] = [1, 2, 3]
- w["b"] = [1, 2]
- w["c"] = [66]
- w["d"] = [10, 20, 30]
- n = 3
- puts w.to_s
- puts
- puts "select_k"
- puts "l0 expect ad"
- select_k(w, method(:l0), n, 2)
- puts "l1 expect cd"
- select_k(w, method(:l1), n, 2)
- puts "l2 expect c"
- select_k(w, method(:l2), n, 1)
- puts
- puts "cut"
- puts "l1 expect cd"
- cut(w, method(:l1), n, 7)
- puts
- puts "median"
- a = [1,2,3,4,5]
- puts a.to_s
- puts median(a, 5)
- puts
- puts "#{median(a, 7)} <- that's because we add missing 0s:"
- puts a.concat(0.step(7-a.size-1).map{|i|0}).to_s
- puts
- puts "mean expect bc"
- w.clear
- w["a"] = [2]
- w["b"] = [2.1]
- w["c"] = [2.2]
- cut(w, method(:mean), 1, 2.05)
- exit
-end
-#_test()
-
-# actually do something
-def usage()
- puts "lplp.rb <l0,l1,l2,linfty,mean,median> <cut|select_k> <k|threshold> [n] < <input>"
- puts " l0...: norms for selection"
- puts "select_k: only output top k (according to the norm of their column vector) features"
- puts " cut: output features with weight >= threshold"
- puts " n: if we do not have a shard count use this number for averaging"
- exit
-end
-
-if ARGV.size < 3 then usage end
-norm_fun = method(ARGV[0].to_sym)
-type = ARGV[1]
-x = ARGV[2].to_f
-
-shard_count_key = "__SHARD_COUNT__"
-
-STDIN.set_encoding 'utf-8'
-STDOUT.set_encoding 'utf-8'
-
-w = {}
-shard_count = 0
-while line = STDIN.gets
- key, val = line.split /\s+/
- if key == shard_count_key
- shard_count += 1
- next
- end
- if w.has_key? key
- w[key].push val.to_f
- else
- w[key] = [val.to_f]
- end
-end
-
-if ARGV.size == 4 then shard_count = ARGV[3].to_f end
-
-if type == 'cut'
- cut(w, norm_fun, shard_count, x)
-elsif type == 'select_k'
- select_k(w, norm_fun, shard_count, x)
-else
- puts "oh oh"
-end
-
diff --git a/dtrain/hstreaming/red-test b/dtrain/hstreaming/red-test
deleted file mode 100644
index 2623d697..00000000
--- a/dtrain/hstreaming/red-test
+++ /dev/null
@@ -1,9 +0,0 @@
-a 1
-b 2
-c 3.5
-a 1
-b 2
-c 3.5
-d 1
-e 2
-__SHARD_COUNT__ 2
diff --git a/dtrain/kbestget.h b/dtrain/kbestget.h
deleted file mode 100644
index dd8882e1..00000000
--- a/dtrain/kbestget.h
+++ /dev/null
@@ -1,152 +0,0 @@
-#ifndef _DTRAIN_KBESTGET_H_
-#define _DTRAIN_KBESTGET_H_
-
-#include "kbest.h" // cdec
-#include "sentence_metadata.h"
-
-#include "verbose.h"
-#include "viterbi.h"
-#include "ff_register.h"
-#include "decoder.h"
-#include "weights.h"
-#include "logval.h"
-
-using namespace std;
-
-namespace dtrain
-{
-
-
-typedef double score_t;
-
-struct ScoredHyp
-{
- vector<WordID> w;
- SparseVector<double> f;
- score_t model;
- score_t score;
- unsigned rank;
-};
-
-struct LocalScorer
-{
- unsigned N_;
- vector<score_t> w_;
-
- virtual score_t
- Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len)=0;
-
- void Reset() {} // only for approx bleu
-
- inline void
- Init(unsigned N, vector<score_t> weights)
- {
- assert(N > 0);
- N_ = N;
- if (weights.empty()) for (unsigned i = 0; i < N_; i++) w_.push_back(1./N_);
- else w_ = weights;
- }
-
- inline score_t
- brevity_penalty(const unsigned hyp_len, const unsigned ref_len)
- {
- if (hyp_len > ref_len) return 1;
- return exp(1 - (score_t)ref_len/hyp_len);
- }
-};
-
-struct HypSampler : public DecoderObserver
-{
- LocalScorer* scorer_;
- vector<WordID>* ref_;
- unsigned f_count_, sz_;
- virtual vector<ScoredHyp>* GetSamples()=0;
- inline void SetScorer(LocalScorer* scorer) { scorer_ = scorer; }
- inline void SetRef(vector<WordID>& ref) { ref_ = &ref; }
- inline unsigned get_f_count() { return f_count_; }
- inline unsigned get_sz() { return sz_; }
-};
-////////////////////////////////////////////////////////////////////////////////
-
-
-
-
-struct KBestGetter : public HypSampler
-{
- const unsigned k_;
- const string filter_type_;
- vector<ScoredHyp> s_;
- unsigned src_len_;
-
- KBestGetter(const unsigned k, const string filter_type) :
- k_(k), filter_type_(filter_type) {}
-
- virtual void
- NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
- {
- src_len_ = smeta.GetSourceLength();
- KBestScored(*hg);
- }
-
- vector<ScoredHyp>* GetSamples() { return &s_; }
-
- void
- KBestScored(const Hypergraph& forest)
- {
- if (filter_type_ == "uniq") {
- KBestUnique(forest);
- } else if (filter_type_ == "not") {
- KBestNoFilter(forest);
- }
- }
-
- void
- KBestUnique(const Hypergraph& forest)
- {
- s_.clear(); sz_ = f_count_ = 0;
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal,
- KBest::FilterUnique, prob_t, EdgeProb> kbest(forest, k_);
- for (unsigned i = 0; i < k_; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal, KBest::FilterUnique,
- prob_t, EdgeProb>::Derivation* d =
- kbest.LazyKthBest(forest.nodes_.size() - 1, i);
- if (!d) break;
- ScoredHyp h;
- h.w = d->yield;
- h.f = d->feature_values;
- h.model = log(d->score);
- h.rank = i;
- h.score = scorer_->Score(h.w, *ref_, i, src_len_);
- s_.push_back(h);
- sz_++;
- f_count_ += h.f.size();
- }
- }
-
- void
- KBestNoFilter(const Hypergraph& forest)
- {
- s_.clear(); sz_ = f_count_ = 0;
- KBest::KBestDerivations<vector<WordID>, ESentenceTraversal> kbest(forest, k_);
- for (unsigned i = 0; i < k_; ++i) {
- const KBest::KBestDerivations<vector<WordID>, ESentenceTraversal>::Derivation* d =
- kbest.LazyKthBest(forest.nodes_.size() - 1, i);
- if (!d) break;
- ScoredHyp h;
- h.w = d->yield;
- h.f = d->feature_values;
- h.model = log(d->score);
- h.rank = i;
- h.score = scorer_->Score(h.w, *ref_, i, src_len_);
- s_.push_back(h);
- sz_++;
- f_count_ += h.f.size();
- }
- }
-};
-
-
-} // namespace
-
-#endif
-
diff --git a/dtrain/ksampler.h b/dtrain/ksampler.h
deleted file mode 100644
index bc2f56cd..00000000
--- a/dtrain/ksampler.h
+++ /dev/null
@@ -1,61 +0,0 @@
-#ifndef _DTRAIN_KSAMPLER_H_
-#define _DTRAIN_KSAMPLER_H_
-
-#include "hg_sampler.h" // cdec
-#include "kbestget.h"
-#include "score.h"
-
-namespace dtrain
-{
-
-bool
-cmp_hyp_by_model_d(ScoredHyp a, ScoredHyp b)
-{
- return a.model > b.model;
-}
-
-struct KSampler : public HypSampler
-{
- const unsigned k_;
- vector<ScoredHyp> s_;
- MT19937* prng_;
- score_t (*scorer)(NgramCounts&, const unsigned, const unsigned, unsigned, vector<score_t>);
- unsigned src_len_;
-
- explicit KSampler(const unsigned k, MT19937* prng) :
- k_(k), prng_(prng) {}
-
- virtual void
- NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg)
- {
- src_len_ = smeta.GetSourceLength();
- ScoredSamples(*hg);
- }
-
- vector<ScoredHyp>* GetSamples() { return &s_; }
-
- void ScoredSamples(const Hypergraph& forest) {
- s_.clear(); sz_ = f_count_ = 0;
- std::vector<HypergraphSampler::Hypothesis> samples;
- HypergraphSampler::sample_hypotheses(forest, k_, prng_, &samples);
- for (unsigned i = 0; i < k_; ++i) {
- ScoredHyp h;
- h.w = samples[i].words;
- h.f = samples[i].fmap;
- h.model = log(samples[i].model_score);
- h.rank = i;
- h.score = scorer_->Score(h.w, *ref_, i, src_len_);
- s_.push_back(h);
- sz_++;
- f_count_ += h.f.size();
- }
- sort(s_.begin(), s_.end(), cmp_hyp_by_model_d);
- for (unsigned i = 0; i < s_.size(); i++) s_[i].rank = i;
- }
-};
-
-
-} // namespace
-
-#endif
-
diff --git a/dtrain/pairsampling.h b/dtrain/pairsampling.h
deleted file mode 100644
index 84be1efb..00000000
--- a/dtrain/pairsampling.h
+++ /dev/null
@@ -1,149 +0,0 @@
-#ifndef _DTRAIN_PAIRSAMPLING_H_
-#define _DTRAIN_PAIRSAMPLING_H_
-
-namespace dtrain
-{
-
-
-bool
-accept_pair(score_t a, score_t b, score_t threshold)
-{
- if (fabs(a - b) < threshold) return false;
- return true;
-}
-
-bool
-cmp_hyp_by_score_d(ScoredHyp a, ScoredHyp b)
-{
- return a.score > b.score;
-}
-
-inline void
-all_pairs(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, float _unused=1)
-{
- sort(s->begin(), s->end(), cmp_hyp_by_score_d);
- unsigned sz = s->size();
- bool b = false;
- unsigned count = 0;
- for (unsigned i = 0; i < sz-1; i++) {
- for (unsigned j = i+1; j < sz; j++) {
- if (threshold > 0) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
- training.push_back(make_pair((*s)[i], (*s)[j]));
- } else {
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- if (++count == max) {
- b = true;
- break;
- }
- }
- if (b) break;
- }
-}
-
-/*
- * multipartite ranking
- * sort (descending) by bleu
- * compare top X to middle Y and low X
- * cmp middle Y to low X
- */
-
-inline void
-partXYX(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, float hi_lo)
-{
- unsigned sz = s->size();
- if (sz < 2) return;
- sort(s->begin(), s->end(), cmp_hyp_by_score_d);
- unsigned sep = round(sz*hi_lo);
- unsigned sep_hi = sep;
- if (sz > 4) while (sep_hi < sz && (*s)[sep_hi-1].score == (*s)[sep_hi].score) ++sep_hi;
- else sep_hi = 1;
- bool b = false;
- unsigned count = 0;
- for (unsigned i = 0; i < sep_hi; i++) {
- for (unsigned j = sep_hi; j < sz; j++) {
-#ifdef DTRAIN_FASTER_PERCEPTRON
- if ((*s)[i].model <= (*s)[j].model) {
-#endif
- if (threshold > 0) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
- training.push_back(make_pair((*s)[i], (*s)[j]));
- } else {
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- if (++count == max) {
- b = true;
- break;
- }
-#ifdef DTRAIN_FASTER_PERCEPTRON
- }
-#endif
- }
- if (b) break;
- }
- unsigned sep_lo = sz-sep;
- while (sep_lo > 0 && (*s)[sep_lo-1].score == (*s)[sep_lo].score) --sep_lo;
- for (unsigned i = sep_hi; i < sz-sep_lo; i++) {
- for (unsigned j = sz-sep_lo; j < sz; j++) {
-#ifdef DTRAIN_FASTER_PERCEPTRON
- if ((*s)[i].model <= (*s)[j].model) {
-#endif
- if (threshold > 0) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold))
- training.push_back(make_pair((*s)[i], (*s)[j]));
- } else {
- if ((*s)[i].score != (*s)[j].score)
- training.push_back(make_pair((*s)[i], (*s)[j]));
- }
- if (++count == max) return;
-#ifdef DTRAIN_FASTER_PERCEPTRON
- }
-#endif
- }
- }
-}
-
-/*
- * pair sampling as in
- * 'Tuning as Ranking' (Hopkins & May, 2011)
- * count = 5000
- * threshold = 5% BLEU (0.05 for param 3)
- * cut = top 50
- */
-bool
-_PRO_cmp_pair_by_diff_d(pair<ScoredHyp,ScoredHyp> a, pair<ScoredHyp,ScoredHyp> b)
-{
- return (fabs(a.first.score - a.second.score)) > (fabs(b.first.score - b.second.score));
-}
-inline void
-PROsampling(vector<ScoredHyp>* s, vector<pair<ScoredHyp,ScoredHyp> >& training, score_t threshold, unsigned max, float _unused=1)
-{
- unsigned max_count = 5000, count = 0, sz = s->size();
- bool b = false;
- for (unsigned i = 0; i < sz-1; i++) {
- for (unsigned j = i+1; j < sz; j++) {
- if (accept_pair((*s)[i].score, (*s)[j].score, threshold)) {
- training.push_back(make_pair((*s)[i], (*s)[j]));
- if (++count == max_count) {
- b = true;
- break;
- }
- }
- }
- if (b) break;
- }
- if (training.size() > 50) {
- sort(training.begin(), training.end(), _PRO_cmp_pair_by_diff_d);
- training.erase(training.begin()+50, training.end());
- }
- return;
-}
-
-
-} // namespace
-
-#endif
-
diff --git a/dtrain/score.cc b/dtrain/score.cc
deleted file mode 100644
index 34fc86a9..00000000
--- a/dtrain/score.cc
+++ /dev/null
@@ -1,254 +0,0 @@
-#include "score.h"
-
-namespace dtrain
-{
-
-
-/*
- * bleu
- *
- * as in "BLEU: a Method for Automatic Evaluation
- * of Machine Translation"
- * (Papineni et al. '02)
- *
- * NOTE: 0 if for one n \in {1..N} count is 0
- */
-score_t
-BleuScorer::Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len)
-{
- if (hyp_len == 0 || ref_len == 0) return 0.;
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
- }
- score_t sum = 0;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) return 0.;
- sum += v[i] * log((score_t)counts.clipped_[i]/counts.sum_[i]);
- }
- return brevity_penalty(hyp_len, ref_len) * exp(sum);
-}
-
-score_t
-BleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, ref, N_);
- return Bleu(counts, hyp_len, ref_len);
-}
-
-/*
- * 'stupid' bleu
- *
- * as in "ORANGE: a Method for Evaluating
- * Automatic Evaluation Metrics
- * for Machine Translation"
- * (Lin & Och '04)
- *
- * NOTE: 0 iff no 1gram match
- */
-score_t
-StupidBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, ref, N_);
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
- }
- score_t sum = 0, add = 0;
- for (unsigned i = 0; i < M; i++) {
- if (i == 0 && (counts.sum_[i] == 0 || counts.clipped_[i] == 0)) return 0.;
- if (i == 1) add = 1;
- sum += v[i] * log(((score_t)counts.clipped_[i] + add)/((counts.sum_[i] + add)));
- }
- return brevity_penalty(hyp_len, ref_len) * exp(sum);
-}
-
-/*
- * smooth bleu
- *
- * as in "An End-to-End Discriminative Approach
- * to Machine Translation"
- * (Liang et al. '06)
- *
- * NOTE: max is 0.9375 (with N=4)
- */
-score_t
-SmoothBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, ref, N_);
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- score_t sum = 0.;
- vector<score_t> i_bleu;
- for (unsigned i = 0; i < M; i++) i_bleu.push_back(0.);
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) {
- break;
- } else {
- score_t i_ng = log((score_t)counts.clipped_[i]/counts.sum_[i]);
- for (unsigned j = i; j < M; j++) {
- i_bleu[j] += (1/((score_t)j+1)) * i_ng;
- }
- }
- sum += exp(i_bleu[i])/pow(2.0, (double)(N_-i));
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * 'sum' bleu
- *
- * sum up Ngram precisions
- */
-score_t
-SumBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, ref, N_);
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- score_t sum = 0.;
- unsigned j = 1;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
- sum += ((score_t)counts.clipped_[i]/counts.sum_[i])/pow(2.0, (double) (N_-j+1));
- j++;
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * 'sum' (exp) bleu
- *
- * sum up exp(Ngram precisions)
- */
-score_t
-SumExpBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, ref, N_);
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- score_t sum = 0.;
- unsigned j = 1;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
- sum += exp(((score_t)counts.clipped_[i]/counts.sum_[i]))/pow(2.0, (double) (N_-j+1));
- j++;
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * 'sum' (whatever) bleu
- *
- * sum up exp(weight * log(Ngram precisions))
- */
-score_t
-SumWhateverBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned /*rank*/, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (hyp_len == 0 || ref_len == 0) return 0.;
- NgramCounts counts = make_ngram_counts(hyp, ref, N_);
- unsigned M = N_;
- vector<score_t> v = w_;
- if (ref_len < N_) {
- M = ref_len;
- for (unsigned i = 0; i < M; i++) v[i] = 1/((score_t)M);
- }
- score_t sum = 0.;
- unsigned j = 1;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || counts.clipped_[i] == 0) break;
- sum += exp(v[i] * log(((score_t)counts.clipped_[i]/counts.sum_[i])))/pow(2.0, (double) (N_-j+1));
- j++;
- }
- return brevity_penalty(hyp_len, ref_len) * sum;
-}
-
-/*
- * approx. bleu
- *
- * as in "Online Large-Margin Training of Syntactic
- * and Structural Translation Features"
- * (Chiang et al. '08)
- *
- * NOTE: Needs some more code in dtrain.cc .
- * No scaling by src len.
- */
-score_t
-ApproxBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned rank, const unsigned src_len)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (ref_len == 0) return 0.;
- score_t score = 0.;
- NgramCounts counts(N_);
- if (hyp_len > 0) {
- counts = make_ngram_counts(hyp, ref, N_);
- NgramCounts tmp = glob_onebest_counts_ + counts;
- score = Bleu(tmp, hyp_len, ref_len);
- }
- if (rank == 0) { // 'context of 1best translations'
- glob_onebest_counts_ += counts;
- glob_onebest_counts_ *= discount_;
- glob_hyp_len_ = discount_ * (glob_hyp_len_ + hyp_len);
- glob_ref_len_ = discount_ * (glob_ref_len_ + ref_len);
- glob_src_len_ = discount_ * (glob_src_len_ + src_len);
- }
- return score;
-}
-
-/*
- * Linear (Corpus) Bleu
- *
- * as in "Lattice Minimum Bayes-Risk Decoding
- * for Statistical Machine Translation"
- * (Tromble et al. '08)
- *
- */
-score_t
-LinearBleuScorer::Score(vector<WordID>& hyp, vector<WordID>& ref,
- const unsigned rank, const unsigned /*src_len*/)
-{
- unsigned hyp_len = hyp.size(), ref_len = ref.size();
- if (ref_len == 0) return 0.;
- unsigned M = N_;
- if (ref_len < N_) M = ref_len;
- NgramCounts counts(M);
- if (hyp_len > 0)
- counts = make_ngram_counts(hyp, ref, M);
- score_t ret = 0.;
- for (unsigned i = 0; i < M; i++) {
- if (counts.sum_[i] == 0 || onebest_counts_.sum_[i] == 0) break;
- ret += counts.sum_[i]/onebest_counts_.sum_[i];
- }
- ret = -(hyp_len/(score_t)onebest_len_) + (1./M) * ret;
- if (rank == 0) {
- onebest_len_ += hyp_len;
- onebest_counts_ += counts;
- }
- return ret;
-}
-
-
-} // namespace
-
diff --git a/dtrain/score.h b/dtrain/score.h
deleted file mode 100644
index f317c903..00000000
--- a/dtrain/score.h
+++ /dev/null
@@ -1,212 +0,0 @@
-#ifndef _DTRAIN_SCORE_H_
-#define _DTRAIN_SCORE_H_
-
-#include "kbestget.h"
-
-using namespace std;
-
-namespace dtrain
-{
-
-
-struct NgramCounts
-{
- unsigned N_;
- map<unsigned, score_t> clipped_;
- map<unsigned, score_t> sum_;
-
- NgramCounts(const unsigned N) : N_(N) { Zero(); }
-
- inline void
- operator+=(const NgramCounts& rhs)
- {
- if (rhs.N_ > N_) Resize(rhs.N_);
- for (unsigned i = 0; i < N_; i++) {
- this->clipped_[i] += rhs.clipped_.find(i)->second;
- this->sum_[i] += rhs.sum_.find(i)->second;
- }
- }
-
- inline const NgramCounts
- operator+(const NgramCounts &other) const
- {
- NgramCounts result = *this;
- result += other;
- return result;
- }
-
- inline void
- operator*=(const score_t rhs)
- {
- for (unsigned i = 0; i < N_; i++) {
- this->clipped_[i] *= rhs;
- this->sum_[i] *= rhs;
- }
- }
-
- inline void
- Add(const unsigned count, const unsigned ref_count, const unsigned i)
- {
- assert(i < N_);
- if (count > ref_count) {
- clipped_[i] += ref_count;
- } else {
- clipped_[i] += count;
- }
- sum_[i] += count;
- }
-
- inline void
- Zero()
- {
- for (unsigned i = 0; i < N_; i++) {
- clipped_[i] = 0.;
- sum_[i] = 0.;
- }
- }
-
- inline void
- One()
- {
- for (unsigned i = 0; i < N_; i++) {
- clipped_[i] = 1.;
- sum_[i] = 1.;
- }
- }
-
- inline void
- Print()
- {
- for (unsigned i = 0; i < N_; i++) {
- cout << i+1 << "grams (clipped):\t" << clipped_[i] << endl;
- cout << i+1 << "grams:\t\t\t" << sum_[i] << endl;
- }
- }
-
- inline void Resize(unsigned N)
- {
- if (N == N_) return;
- else if (N > N_) {
- for (unsigned i = N_; i < N; i++) {
- clipped_[i] = 0.;
- sum_[i] = 0.;
- }
- } else { // N < N_
- for (unsigned i = N_-1; i > N-1; i--) {
- clipped_.erase(i);
- sum_.erase(i);
- }
- }
- N_ = N;
- }
-};
-
-typedef map<vector<WordID>, unsigned> Ngrams;
-
-inline Ngrams
-make_ngrams(const vector<WordID>& s, const unsigned N)
-{
- Ngrams ngrams;
- vector<WordID> ng;
- for (size_t i = 0; i < s.size(); i++) {
- ng.clear();
- for (unsigned j = i; j < min(i+N, s.size()); j++) {
- ng.push_back(s[j]);
- ngrams[ng]++;
- }
- }
- return ngrams;
-}
-
-inline NgramCounts
-make_ngram_counts(const vector<WordID>& hyp, const vector<WordID>& ref, const unsigned N)
-{
- Ngrams hyp_ngrams = make_ngrams(hyp, N);
- Ngrams ref_ngrams = make_ngrams(ref, N);
- NgramCounts counts(N);
- Ngrams::iterator it;
- Ngrams::iterator ti;
- for (it = hyp_ngrams.begin(); it != hyp_ngrams.end(); it++) {
- ti = ref_ngrams.find(it->first);
- if (ti != ref_ngrams.end()) {
- counts.Add(it->second, ti->second, it->first.size() - 1);
- } else {
- counts.Add(it->second, 0, it->first.size() - 1);
- }
- }
- return counts;
-}
-
-struct BleuScorer : public LocalScorer
-{
- score_t Bleu(NgramCounts& counts, const unsigned hyp_len, const unsigned ref_len);
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
-};
-
-struct StupidBleuScorer : public LocalScorer
-{
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
-};
-
-struct SmoothBleuScorer : public LocalScorer
-{
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
-};
-
-struct SumBleuScorer : public LocalScorer
-{
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
-};
-
-struct SumExpBleuScorer : public LocalScorer
-{
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
-};
-
-struct SumWhateverBleuScorer : public LocalScorer
-{
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned /*rank*/, const unsigned /*src_len*/);
-};
-
-struct ApproxBleuScorer : public BleuScorer
-{
- NgramCounts glob_onebest_counts_;
- unsigned glob_hyp_len_, glob_ref_len_, glob_src_len_;
- score_t discount_;
-
- ApproxBleuScorer(unsigned N, score_t d) : glob_onebest_counts_(NgramCounts(N)), discount_(d)
- {
- glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0;
- }
-
- inline void Reset() {
- glob_onebest_counts_.Zero();
- glob_hyp_len_ = glob_ref_len_ = glob_src_len_ = 0.;
- }
-
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned src_len);
-};
-
-struct LinearBleuScorer : public BleuScorer
-{
- unsigned onebest_len_;
- NgramCounts onebest_counts_;
-
- LinearBleuScorer(unsigned N) : onebest_len_(1), onebest_counts_(N)
- {
- onebest_counts_.One();
- }
-
- score_t Score(vector<WordID>& hyp, vector<WordID>& ref, const unsigned rank, const unsigned /*src_len*/);
-
- inline void Reset() {
- onebest_len_ = 1;
- onebest_counts_.One();
- }
-};
-
-
-} // namespace
-
-#endif
-
diff --git a/dtrain/test/example/README b/dtrain/test/example/README
deleted file mode 100644
index 6937b11b..00000000
--- a/dtrain/test/example/README
+++ /dev/null
@@ -1,8 +0,0 @@
-Small example of input format for distributed training.
-Call dtrain from cdec/dtrain/ with ./dtrain -c test/example/dtrain.ini .
-
-For this to work, undef 'DTRAIN_LOCAL' in dtrain.h
-and recompile.
-
-Data is here: http://simianer.de/#dtrain
-
diff --git a/dtrain/test/example/cdec.ini b/dtrain/test/example/cdec.ini
deleted file mode 100644
index 6642107f..00000000
--- a/dtrain/test/example/cdec.ini
+++ /dev/null
@@ -1,24 +0,0 @@
-formalism=scfg
-add_pass_through_rules=true
-scfg_max_span_limit=15
-intersection_strategy=cube_pruning
-cubepruning_pop_limit=30
-feature_function=WordPenalty
-feature_function=KLanguageModel test/example/nc-wmt11.en.srilm.gz
-# all currently working feature functions for translation:
-# (with those features active that were used in the ACL paper)
-#feature_function=ArityPenalty
-#feature_function=CMR2008ReorderingFeatures
-#feature_function=Dwarf
-#feature_function=InputIndicator
-#feature_function=LexNullJump
-#feature_function=NewJump
-#feature_function=NgramFeatures
-#feature_function=NonLatinCount
-#feature_function=OutputIndicator
-feature_function=RuleIdentityFeatures
-feature_function=RuleNgramFeatures
-feature_function=RuleShape
-#feature_function=SourceSpanSizeFeatures
-#feature_function=SourceWordPenalty
-#feature_function=SpanFeatures
diff --git a/dtrain/test/example/dtrain.ini b/dtrain/test/example/dtrain.ini
deleted file mode 100644
index c8ac7c3f..00000000
--- a/dtrain/test/example/dtrain.ini
+++ /dev/null
@@ -1,22 +0,0 @@
-input=test/example/nc-wmt11.1k.gz # use '-' for STDIN
-output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
-select_weights=VOID # don't output weights
-decoder_config=test/example/cdec.ini # config for cdec
-# weights for these features will be printed on each iteration
-print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 PhraseModel_1 PhraseModel_2 PhraseModel_3 PhraseModel_4 PhraseModel_5 PhraseModel_6 PassThrough
-tmp=/tmp
-stop_after=10 # stop epoch after 10 inputs
-
-# interesting stuff
-epochs=3 # run over input 3 times
-k=100 # use 100best lists
-N=4 # optimize (approx) BLEU4
-scorer=stupid_bleu # use 'stupid' BLEU+1
-learning_rate=0.0001 # learning rate
-gamma=0 # use SVM reg
-sample_from=kbest # use kbest lists (as opposed to forest)
-filter=uniq # only unique entries in kbest (surface form)
-pair_sampling=XYX
-hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
-pair_threshold=0 # minimum distance in BLEU (this will still only use pairs with diff > 0)
-loss_margin=0
diff --git a/dtrain/test/example/expected-output b/dtrain/test/example/expected-output
deleted file mode 100644
index 25d2c069..00000000
--- a/dtrain/test/example/expected-output
+++ /dev/null
@@ -1,125 +0,0 @@
- cdec cfg 'test/example/cdec.ini'
-feature: WordPenalty (no config parameters)
-State is 0 bytes for feature WordPenalty
-feature: KLanguageModel (with config parameters 'test/example/nc-wmt11.en.srilm.gz')
-Loading the LM will be faster if you build a binary file.
-Reading test/example/nc-wmt11.en.srilm.gz
-----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
-****************************************************************************************************
-Loaded 5-gram KLM from test/example/nc-wmt11.en.srilm.gz (MapSize=49581)
-State is 98 bytes for feature KLanguageModel test/example/nc-wmt11.en.srilm.gz
-feature: RuleIdentityFeatures (no config parameters)
-State is 0 bytes for feature RuleIdentityFeatures
-feature: RuleNgramFeatures (no config parameters)
-State is 0 bytes for feature RuleNgramFeatures
-feature: RuleShape (no config parameters)
- Example feature: Shape_S00000_T00000
-State is 0 bytes for feature RuleShape
-Seeding random number sequence to 1072059181
-
-dtrain
-Parameters:
- k 100
- N 4
- T 3
- scorer 'stupid_bleu'
- sample from 'kbest'
- filter 'uniq'
- learning rate 0.0001
- gamma 0
- loss margin 0
- pairs 'XYX'
- hi lo 0.1
- pair threshold 0
- select weights 'VOID'
- l1 reg 0 'none'
- cdec cfg 'test/example/cdec.ini'
- input 'test/example/nc-wmt11.1k.gz'
- output '-'
- stop_after 10
-(a dot represents 10 inputs)
-Iteration #1 of 3.
- . 10
-Stopping after 10 input sentences.
-WEIGHTS
- Glue = -0.0293
- WordPenalty = +0.049075
- LanguageModel = +0.24345
- LanguageModel_OOV = -0.2029
- PhraseModel_0 = +0.0084102
- PhraseModel_1 = +0.021729
- PhraseModel_2 = +0.014922
- PhraseModel_3 = +0.104
- PhraseModel_4 = -0.14308
- PhraseModel_5 = +0.0247
- PhraseModel_6 = -0.012
- PassThrough = -0.2161
- ---
- 1best avg score: 0.16872 (+0.16872)
- 1best avg model score: -1.8276 (-1.8276)
- avg # pairs: 1121.1
- avg # rank err: 555.6
- avg # margin viol: 0
- non0 feature count: 277
- avg list sz: 77.2
- avg f count: 90.96
-(time 0.1 min, 0.6 s/S)
-
-Iteration #2 of 3.
- . 10
-WEIGHTS
- Glue = -0.3526
- WordPenalty = +0.067576
- LanguageModel = +1.155
- LanguageModel_OOV = -0.2728
- PhraseModel_0 = -0.025529
- PhraseModel_1 = +0.095869
- PhraseModel_2 = +0.094567
- PhraseModel_3 = +0.12482
- PhraseModel_4 = -0.36533
- PhraseModel_5 = +0.1068
- PhraseModel_6 = -0.1517
- PassThrough = -0.286
- ---
- 1best avg score: 0.18394 (+0.015221)
- 1best avg model score: 3.205 (+5.0326)
- avg # pairs: 1168.3
- avg # rank err: 594.8
- avg # margin viol: 0
- non0 feature count: 543
- avg list sz: 77.5
- avg f count: 85.916
-(time 0.083 min, 0.5 s/S)
-
-Iteration #3 of 3.
- . 10
-WEIGHTS
- Glue = -0.392
- WordPenalty = +0.071963
- LanguageModel = +0.81266
- LanguageModel_OOV = -0.4177
- PhraseModel_0 = -0.2649
- PhraseModel_1 = -0.17931
- PhraseModel_2 = +0.038261
- PhraseModel_3 = +0.20261
- PhraseModel_4 = -0.42621
- PhraseModel_5 = +0.3198
- PhraseModel_6 = -0.1437
- PassThrough = -0.4309
- ---
- 1best avg score: 0.2962 (+0.11225)
- 1best avg model score: -36.274 (-39.479)
- avg # pairs: 1109.6
- avg # rank err: 515.9
- avg # margin viol: 0
- non0 feature count: 741
- avg list sz: 77
- avg f count: 88.982
-(time 0.083 min, 0.5 s/S)
-
-Writing weights file to '-' ...
-done
-
----
-Best iteration: 3 [SCORE 'stupid_bleu'=0.2962].
-This took 0.26667 min.
diff --git a/dtrain/test/toy/cdec.ini b/dtrain/test/toy/cdec.ini
deleted file mode 100644
index 98b02d44..00000000
--- a/dtrain/test/toy/cdec.ini
+++ /dev/null
@@ -1,2 +0,0 @@
-formalism=scfg
-add_pass_through_rules=true
diff --git a/dtrain/test/toy/dtrain.ini b/dtrain/test/toy/dtrain.ini
deleted file mode 100644
index a091732f..00000000
--- a/dtrain/test/toy/dtrain.ini
+++ /dev/null
@@ -1,12 +0,0 @@
-decoder_config=test/toy/cdec.ini
-input=test/toy/input
-output=-
-print_weights=logp shell_rule house_rule small_rule little_rule PassThrough
-k=4
-N=4
-epochs=2
-scorer=bleu
-sample_from=kbest
-filter=uniq
-pair_sampling=all
-learning_rate=1
diff --git a/dtrain/test/toy/input b/dtrain/test/toy/input
deleted file mode 100644
index 4d10a9ea..00000000
--- a/dtrain/test/toy/input
+++ /dev/null
@@ -1,2 +0,0 @@
-0 ich sah ein kleines haus i saw a little house [S] ||| [NP,1] [VP,2] ||| [1] [2] ||| logp=0 [NP] ||| ich ||| i ||| logp=0 [NP] ||| ein [NN,1] ||| a [1] ||| logp=0 [NN] ||| [JJ,1] haus ||| [1] house ||| logp=0 house_rule=1 [NN] ||| [JJ,1] haus ||| [1] shell ||| logp=0 shell_rule=1 [JJ] ||| kleines ||| small ||| logp=0 small_rule=1 [JJ] ||| kleines ||| little ||| logp=0 little_rule=1 [JJ] ||| grosses ||| big ||| logp=0 [JJ] ||| grosses ||| large ||| logp=0 [VP] ||| [V,1] [NP,2] ||| [1] [2] ||| logp=0 [V] ||| sah ||| saw ||| logp=0 [V] ||| fand ||| found ||| logp=0
-1 ich fand ein kleines haus i found a little house [S] ||| [NP,1] [VP,2] ||| [1] [2] ||| logp=0 [NP] ||| ich ||| i ||| logp=0 [NP] ||| ein [NN,1] ||| a [1] ||| logp=0 [NN] ||| [JJ,1] haus ||| [1] house ||| logp=0 house_rule=1 [NN] ||| [JJ,1] haus ||| [1] shell ||| logp=0 shell_rule=1 [JJ] ||| kleines ||| small ||| logp=0 small_rule=1 [JJ] ||| kleines ||| little ||| logp=0 little_rule=1 [JJ] ||| grosses ||| big ||| logp=0 [JJ] ||| grosses ||| large ||| logp=0 [VP] ||| [V,1] [NP,2] ||| [1] [2] ||| logp=0 [V] ||| sah ||| saw ||| logp=0 [V] ||| fand ||| found ||| logp=0