diff options
author | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
---|---|---|
committer | Avneesh Saluja <asaluja@gmail.com> | 2013-03-28 18:28:16 -0700 |
commit | 3d8d656fa7911524e0e6885647173474524e0784 (patch) | |
tree | 81b1ee2fcb67980376d03f0aa48e42e53abff222 /dtrain/dtrain.cc | |
parent | be7f57fdd484e063775d7abf083b9fa4c403b610 (diff) | |
parent | 96fedabebafe7a38a6d5928be8fff767e411d705 (diff) |
fixed conflicts
Diffstat (limited to 'dtrain/dtrain.cc')
-rw-r--r-- | dtrain/dtrain.cc | 657 |
1 files changed, 0 insertions, 657 deletions
diff --git a/dtrain/dtrain.cc b/dtrain/dtrain.cc deleted file mode 100644 index b7a4bb6f..00000000 --- a/dtrain/dtrain.cc +++ /dev/null @@ -1,657 +0,0 @@ -#include "dtrain.h" - - -bool -dtrain_init(int argc, char** argv, po::variables_map* cfg) -{ - po::options_description ini("Configuration File Options"); - ini.add_options() - ("input", po::value<string>()->default_value("-"), "input file") - ("output", po::value<string>()->default_value("-"), "output weights file, '-' for STDOUT") - ("input_weights", po::value<string>(), "input weights file (e.g. from previous iteration)") - ("decoder_config", po::value<string>(), "configuration file for cdec") - ("print_weights", po::value<string>(), "weights to print on each iteration") - ("stop_after", po::value<unsigned>()->default_value(0), "stop after X input sentences") - ("tmp", po::value<string>()->default_value("/tmp"), "temp dir to use") - ("keep", po::value<bool>()->zero_tokens(), "keep weights files for each iteration") - ("hstreaming", po::value<string>(), "run in hadoop streaming mode, arg is a task id") - ("epochs", po::value<unsigned>()->default_value(10), "# of iterations T (per shard)") - ("k", po::value<unsigned>()->default_value(100), "how many translations to sample") - ("sample_from", po::value<string>()->default_value("kbest"), "where to sample translations from: 'kbest', 'forest'") - ("filter", po::value<string>()->default_value("uniq"), "filter kbest list: 'not', 'uniq'") - ("pair_sampling", po::value<string>()->default_value("XYX"), "how to sample pairs: 'all', 'XYX' or 'PRO'") - ("hi_lo", po::value<float>()->default_value(0.1), "hi and lo (X) for XYX (default 0.1), <= 0.5") - ("pair_threshold", po::value<score_t>()->default_value(0.), "bleu [0,1] threshold to filter pairs") - ("N", po::value<unsigned>()->default_value(4), "N for Ngrams (BLEU)") - ("scorer", po::value<string>()->default_value("stupid_bleu"), "scoring: bleu, stupid_, smooth_, approx_, lc_") - ("learning_rate", po::value<weight_t>()->default_value(0.0001), "learning rate") - ("gamma", po::value<weight_t>()->default_value(0.), "gamma for SVM (0 for perceptron)") - ("select_weights", po::value<string>()->default_value("last"), "output best, last, avg weights ('VOID' to throw away)") - ("rescale", po::value<bool>()->zero_tokens(), "rescale weight vector after each input") - ("l1_reg", po::value<string>()->default_value("none"), "apply l1 regularization as in 'Tsuroka et al' (2010)") - ("l1_reg_strength", po::value<weight_t>(), "l1 regularization strength") - ("fselect", po::value<weight_t>()->default_value(-1), "select top x percent (or by threshold) of features after each epoch NOT IMPL") // TODO - ("approx_bleu_d", po::value<score_t>()->default_value(0.9), "discount for approx. BLEU") - ("scale_bleu_diff", po::value<bool>()->zero_tokens(), "learning rate <- bleu diff of a misranked pair") - ("loss_margin", po::value<weight_t>()->default_value(0.), "update if no error in pref pair but model scores this near") - ("max_pairs", po::value<unsigned>()->default_value(std::numeric_limits<unsigned>::max()), "max. # of pairs per Sent.") -#ifdef DTRAIN_LOCAL - ("refs,r", po::value<string>(), "references in local mode") -#endif - ("noup", po::value<bool>()->zero_tokens(), "do not update weights"); - po::options_description cl("Command Line Options"); - cl.add_options() - ("config,c", po::value<string>(), "dtrain config file") - ("quiet,q", po::value<bool>()->zero_tokens(), "be quiet") - ("verbose,v", po::value<bool>()->zero_tokens(), "be verbose"); - cl.add(ini); - po::store(parse_command_line(argc, argv, cl), *cfg); - if (cfg->count("config")) { - ifstream ini_f((*cfg)["config"].as<string>().c_str()); - po::store(po::parse_config_file(ini_f, ini), *cfg); - } - po::notify(*cfg); - if (!cfg->count("decoder_config")) { - cerr << cl << endl; - return false; - } - if (cfg->count("hstreaming") && (*cfg)["output"].as<string>() != "-") { - cerr << "When using 'hstreaming' the 'output' param should be '-'." << endl; - return false; - } -#ifdef DTRAIN_LOCAL - if ((*cfg)["input"].as<string>() == "-") { - cerr << "Can't use stdin as input with this binary. Recompile without DTRAIN_LOCAL" << endl; - return false; - } -#endif - if ((*cfg)["sample_from"].as<string>() != "kbest" - && (*cfg)["sample_from"].as<string>() != "forest") { - cerr << "Wrong 'sample_from' param: '" << (*cfg)["sample_from"].as<string>() << "', use 'kbest' or 'forest'." << endl; - return false; - } - if ((*cfg)["sample_from"].as<string>() == "kbest" && (*cfg)["filter"].as<string>() != "uniq" && - (*cfg)["filter"].as<string>() != "not") { - cerr << "Wrong 'filter' param: '" << (*cfg)["filter"].as<string>() << "', use 'uniq' or 'not'." << endl; - return false; - } - if ((*cfg)["pair_sampling"].as<string>() != "all" && (*cfg)["pair_sampling"].as<string>() != "XYX" && - (*cfg)["pair_sampling"].as<string>() != "PRO") { - cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as<string>() << "'." << endl; - return false; - } - if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as<string>() != "XYX") { - cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl; - } - if((*cfg)["hi_lo"].as<float>() > 0.5 || (*cfg)["hi_lo"].as<float>() < 0.01) { - cerr << "hi_lo must lie in [0.01, 0.5]" << endl; - return false; - } - if ((*cfg)["pair_threshold"].as<score_t>() < 0) { - cerr << "The threshold must be >= 0!" << endl; - return false; - } - if ((*cfg)["select_weights"].as<string>() != "last" && (*cfg)["select_weights"].as<string>() != "best" && - (*cfg)["select_weights"].as<string>() != "avg" && (*cfg)["select_weights"].as<string>() != "VOID") { - cerr << "Wrong 'select_weights' param: '" << (*cfg)["select_weights"].as<string>() << "', use 'last' or 'best'." << endl; - return false; - } - return true; -} - -int -main(int argc, char** argv) -{ - // handle most parameters - po::variables_map cfg; - if (!dtrain_init(argc, argv, &cfg)) exit(1); // something is wrong - bool quiet = false; - if (cfg.count("quiet")) quiet = true; - bool verbose = false; - if (cfg.count("verbose")) verbose = true; - bool noup = false; - if (cfg.count("noup")) noup = true; - bool hstreaming = false; - string task_id; - if (cfg.count("hstreaming")) { - hstreaming = true; - quiet = true; - task_id = cfg["hstreaming"].as<string>(); - cerr.precision(17); - } - bool rescale = false; - if (cfg.count("rescale")) rescale = true; - HSReporter rep(task_id); - bool keep = false; - if (cfg.count("keep")) keep = true; - - const unsigned k = cfg["k"].as<unsigned>(); - const unsigned N = cfg["N"].as<unsigned>(); - const unsigned T = cfg["epochs"].as<unsigned>(); - const unsigned stop_after = cfg["stop_after"].as<unsigned>(); - const string filter_type = cfg["filter"].as<string>(); - const string sample_from = cfg["sample_from"].as<string>(); - const string pair_sampling = cfg["pair_sampling"].as<string>(); - const score_t pair_threshold = cfg["pair_threshold"].as<score_t>(); - const string select_weights = cfg["select_weights"].as<string>(); - const float hi_lo = cfg["hi_lo"].as<float>(); - const score_t approx_bleu_d = cfg["approx_bleu_d"].as<score_t>(); - const unsigned max_pairs = cfg["max_pairs"].as<unsigned>(); - weight_t loss_margin = cfg["loss_margin"].as<weight_t>(); - if (loss_margin > 9998.) loss_margin = std::numeric_limits<float>::max(); - bool scale_bleu_diff = false; - if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true; - bool average = false; - if (select_weights == "avg") - average = true; - vector<string> print_weights; - if (cfg.count("print_weights")) - boost::split(print_weights, cfg["print_weights"].as<string>(), boost::is_any_of(" ")); - - // setup decoder - register_feature_functions(); - SetSilent(true); - ReadFile ini_rf(cfg["decoder_config"].as<string>()); - if (!quiet) - cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; - Decoder decoder(ini_rf.stream()); - - // scoring metric/scorer - string scorer_str = cfg["scorer"].as<string>(); - LocalScorer* scorer; - if (scorer_str == "bleu") { - scorer = dynamic_cast<BleuScorer*>(new BleuScorer); - } else if (scorer_str == "stupid_bleu") { - scorer = dynamic_cast<StupidBleuScorer*>(new StupidBleuScorer); - } else if (scorer_str == "smooth_bleu") { - scorer = dynamic_cast<SmoothBleuScorer*>(new SmoothBleuScorer); - } else if (scorer_str == "sum_bleu") { - scorer = dynamic_cast<SumBleuScorer*>(new SumBleuScorer); - } else if (scorer_str == "sumexp_bleu") { - scorer = dynamic_cast<SumExpBleuScorer*>(new SumExpBleuScorer); - } else if (scorer_str == "sumwhatever_bleu") { - scorer = dynamic_cast<SumWhateverBleuScorer*>(new SumWhateverBleuScorer); - } else if (scorer_str == "approx_bleu") { - scorer = dynamic_cast<ApproxBleuScorer*>(new ApproxBleuScorer(N, approx_bleu_d)); - } else if (scorer_str == "lc_bleu") { - scorer = dynamic_cast<LinearBleuScorer*>(new LinearBleuScorer(N)); - } else { - cerr << "Don't know scoring metric: '" << scorer_str << "', exiting." << endl; - exit(1); - } - vector<score_t> bleu_weights; - scorer->Init(N, bleu_weights); - - // setup decoder observer - MT19937 rng; // random number generator, only for forest sampling - HypSampler* observer; - if (sample_from == "kbest") - observer = dynamic_cast<KBestGetter*>(new KBestGetter(k, filter_type)); - else - observer = dynamic_cast<KSampler*>(new KSampler(k, &rng)); - observer->SetScorer(scorer); - - // init weights - vector<weight_t>& dense_weights = decoder.CurrentWeightVector(); - SparseVector<weight_t> lambdas, cumulative_penalties, w_average; - if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as<string>(), &dense_weights); - Weights::InitSparseVector(dense_weights, &lambdas); - - // meta params for perceptron, SVM - weight_t eta = cfg["learning_rate"].as<weight_t>(); - weight_t gamma = cfg["gamma"].as<weight_t>(); - - // l1 regularization - bool l1naive = false; - bool l1clip = false; - bool l1cumul = false; - weight_t l1_reg = 0; - if (cfg["l1_reg"].as<string>() != "none") { - string s = cfg["l1_reg"].as<string>(); - if (s == "naive") l1naive = true; - else if (s == "clip") l1clip = true; - else if (s == "cumul") l1cumul = true; - l1_reg = cfg["l1_reg_strength"].as<weight_t>(); - } - - // output - string output_fn = cfg["output"].as<string>(); - // input - string input_fn = cfg["input"].as<string>(); - ReadFile input(input_fn); - // buffer input for t > 0 - vector<string> src_str_buf; // source strings (decoder takes only strings) - vector<vector<WordID> > ref_ids_buf; // references as WordID vecs - // where temp files go - string tmp_path = cfg["tmp"].as<string>(); -#ifdef DTRAIN_LOCAL - string refs_fn = cfg["refs"].as<string>(); - ReadFile refs(refs_fn); -#else - string grammar_buf_fn = gettmpf(tmp_path, "dtrain-grammars"); - ogzstream grammar_buf_out; - grammar_buf_out.open(grammar_buf_fn.c_str()); -#endif - - unsigned in_sz = std::numeric_limits<unsigned>::max(); // input index, input size - vector<pair<score_t, score_t> > all_scores; - score_t max_score = 0.; - unsigned best_it = 0; - float overall_time = 0.; - - // output cfg - if (!quiet) { - cerr << _p5; - cerr << endl << "dtrain" << endl << "Parameters:" << endl; - cerr << setw(25) << "k " << k << endl; - cerr << setw(25) << "N " << N << endl; - cerr << setw(25) << "T " << T << endl; - cerr << setw(25) << "scorer '" << scorer_str << "'" << endl; - if (scorer_str == "approx_bleu") - cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl; - cerr << setw(25) << "sample from " << "'" << sample_from << "'" << endl; - if (sample_from == "kbest") - cerr << setw(25) << "filter " << "'" << filter_type << "'" << endl; - if (!scale_bleu_diff) cerr << setw(25) << "learning rate " << eta << endl; - else cerr << setw(25) << "learning rate " << "bleu diff" << endl; - cerr << setw(25) << "gamma " << gamma << endl; - cerr << setw(25) << "loss margin " << loss_margin << endl; - cerr << setw(25) << "pairs " << "'" << pair_sampling << "'" << endl; - if (pair_sampling == "XYX") - cerr << setw(25) << "hi lo " << hi_lo << endl; - cerr << setw(25) << "pair threshold " << pair_threshold << endl; - cerr << setw(25) << "select weights " << "'" << select_weights << "'" << endl; - if (cfg.count("l1_reg")) - cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as<string>() << "'" << endl; - if (rescale) - cerr << setw(25) << "rescale " << rescale << endl; - cerr << setw(25) << "max pairs " << max_pairs << endl; - cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as<string>() << "'" << endl; - cerr << setw(25) << "input " << "'" << input_fn << "'" << endl; -#ifdef DTRAIN_LOCAL - cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl; -#endif - cerr << setw(25) << "output " << "'" << output_fn << "'" << endl; - if (cfg.count("input_weights")) - cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as<string>() << "'" << endl; - if (stop_after > 0) - cerr << setw(25) << "stop_after " << stop_after << endl; - if (!verbose) cerr << "(a dot represents " << DTRAIN_DOTS << " inputs)" << endl; - } - - - for (unsigned t = 0; t < T; t++) // T epochs - { - - if (hstreaming) cerr << "reporter:status:Iteration #" << t+1 << " of " << T << endl; - - time_t start, end; - time(&start); -#ifndef DTRAIN_LOCAL - igzstream grammar_buf_in; - if (t > 0) grammar_buf_in.open(grammar_buf_fn.c_str()); -#endif - score_t score_sum = 0.; - score_t model_sum(0); - unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0; - if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl; - - while(true) - { - - string in; - bool next = false, stop = false; // next iteration or premature stop - if (t == 0) { - if(!getline(*input, in)) next = true; - } else { - if (ii == in_sz) next = true; // stop if we reach the end of our input - } - // stop after X sentences (but still go on for those) - if (stop_after > 0 && stop_after == ii && !next) stop = true; - - // produce some pretty output - if (!quiet && !verbose) { - if (ii == 0) cerr << " "; - if ((ii+1) % (DTRAIN_DOTS) == 0) { - cerr << "."; - cerr.flush(); - } - if ((ii+1) % (20*DTRAIN_DOTS) == 0) { - cerr << " " << ii+1 << endl; - if (!next && !stop) cerr << " "; - } - if (stop) { - if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; - cerr << "Stopping after " << stop_after << " input sentences." << endl; - } else { - if (next) { - if (ii % (20*DTRAIN_DOTS) != 0) cerr << " " << ii << endl; - } - } - } - - // next iteration - if (next || stop) break; - - // weights - lambdas.init_vector(&dense_weights); - - // getting input - vector<WordID> ref_ids; // reference as vector<WordID> -#ifndef DTRAIN_LOCAL - vector<string> in_split; // input: sid\tsrc\tref\tpsg - if (t == 0) { - // handling input - split_in(in, in_split); - if (hstreaming && ii == 0) cerr << "reporter:counter:" << task_id << ",First ID," << in_split[0] << endl; - // getting reference - vector<string> ref_tok; - boost::split(ref_tok, in_split[2], boost::is_any_of(" ")); - register_and_convert(ref_tok, ref_ids); - ref_ids_buf.push_back(ref_ids); - // process and set grammar - bool broken_grammar = true; // ignore broken grammars - for (string::iterator it = in.begin(); it != in.end(); it++) { - if (!isspace(*it)) { - broken_grammar = false; - break; - } - } - if (broken_grammar) { - cerr << "Broken grammar for " << ii+1 << "! Ignoring this input." << endl; - continue; - } - boost::replace_all(in, "\t", "\n"); - in += "\n"; - grammar_buf_out << in << DTRAIN_GRAMMAR_DELIM << " " << in_split[0] << endl; - decoder.AddSupplementalGrammarFromString(in); - src_str_buf.push_back(in_split[1]); - // decode - observer->SetRef(ref_ids); - decoder.Decode(in_split[1], observer); - } else { - // get buffered grammar - string grammar_str; - while (true) { - string rule; - getline(grammar_buf_in, rule); - if (boost::starts_with(rule, DTRAIN_GRAMMAR_DELIM)) break; - grammar_str += rule + "\n"; - } - decoder.AddSupplementalGrammarFromString(grammar_str); - // decode - observer->SetRef(ref_ids_buf[ii]); - decoder.Decode(src_str_buf[ii], observer); - } -#else - if (t == 0) { - string r_; - getline(*refs, r_); - vector<string> ref_tok; - boost::split(ref_tok, r_, boost::is_any_of(" ")); - register_and_convert(ref_tok, ref_ids); - ref_ids_buf.push_back(ref_ids); - src_str_buf.push_back(in); - } else { - ref_ids = ref_ids_buf[ii]; - } - observer->SetRef(ref_ids); - if (t == 0) - decoder.Decode(in, observer); - else - decoder.Decode(src_str_buf[ii], observer); -#endif - - // get (scored) samples - vector<ScoredHyp>* samples = observer->GetSamples(); - - if (verbose) { - cerr << "--- ref for " << ii << ": "; - if (t > 0) printWordIDVec(ref_ids_buf[ii]); - else printWordIDVec(ref_ids); - cerr << endl; - for (unsigned u = 0; u < samples->size(); u++) { - cerr << _p2 << _np << "[" << u << ". '"; - printWordIDVec((*samples)[u].w); - cerr << "'" << endl; - cerr << "SCORE=" << (*samples)[u].score << ",model="<< (*samples)[u].model << endl; - cerr << "F{" << (*samples)[u].f << "} ]" << endl << endl; - } - } - - score_sum += (*samples)[0].score; // stats for 1best - model_sum += (*samples)[0].model; - - f_count += observer->get_f_count(); - list_sz += observer->get_sz(); - - // weight updates - if (!noup) { - // get pairs - vector<pair<ScoredHyp,ScoredHyp> > pairs; - if (pair_sampling == "all") - all_pairs(samples, pairs, pair_threshold, max_pairs); - if (pair_sampling == "XYX") - partXYX(samples, pairs, pair_threshold, max_pairs, hi_lo); - if (pair_sampling == "PRO") - PROsampling(samples, pairs, pair_threshold, max_pairs); - npairs += pairs.size(); - - for (vector<pair<ScoredHyp,ScoredHyp> >::iterator it = pairs.begin(); - it != pairs.end(); it++) { -#ifdef DTRAIN_FASTER_PERCEPTRON - bool rank_error = true; // pair sampling already did this for us - rank_errors++; - score_t margin = std::numeric_limits<float>::max(); -#else - bool rank_error = it->first.model <= it->second.model; - if (rank_error) rank_errors++; - score_t margin = fabs(fabs(it->first.model) - fabs(it->second.model)); - if (!rank_error && margin < loss_margin) margin_violations++; -#endif - if (scale_bleu_diff) eta = it->first.score - it->second.score; - if (rank_error || margin < loss_margin) { - SparseVector<weight_t> diff_vec = it->first.f - it->second.f; - lambdas.plus_eq_v_times_s(diff_vec, eta); - if (gamma) - lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); - } - } - - // l1 regularization - if (l1naive) { - for (unsigned d = 0; d < lambdas.size(); d++) { - weight_t v = lambdas.get(d); - lambdas.set_value(d, v - sign(v) * l1_reg); - } - } else if (l1clip) { - for (unsigned d = 0; d < lambdas.size(); d++) { - if (lambdas.nonzero(d)) { - weight_t v = lambdas.get(d); - if (v > 0) { - lambdas.set_value(d, max(0., v - l1_reg)); - } else { - lambdas.set_value(d, min(0., v + l1_reg)); - } - } - } - } else if (l1cumul) { - weight_t acc_penalty = (ii+1) * l1_reg; // ii is the index of the current input - for (unsigned d = 0; d < lambdas.size(); d++) { - if (lambdas.nonzero(d)) { - weight_t v = lambdas.get(d); - weight_t penalty = 0; - if (v > 0) { - penalty = max(0., v-(acc_penalty + cumulative_penalties.get(d))); - } else { - penalty = min(0., v+(acc_penalty - cumulative_penalties.get(d))); - } - lambdas.set_value(d, penalty); - cumulative_penalties.set_value(d, cumulative_penalties.get(d)+penalty); - } - } - } - - } - - if (rescale) lambdas /= lambdas.l2norm(); - - ++ii; - - if (hstreaming) { - rep.update_counter("Seen #"+boost::lexical_cast<string>(t+1), 1u); - rep.update_counter("Seen", 1u); - } - - } // input loop - - if (average) w_average += lambdas; - - if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset(); - - if (t == 0) { - in_sz = ii; // remember size of input (# lines) - if (hstreaming) { - rep.update_counter("|Input|", ii); - rep.update_gcounter("|Input|", ii); - rep.update_gcounter("Shards", 1u); - } - } - -#ifndef DTRAIN_LOCAL - if (t == 0) { - grammar_buf_out.close(); - } else { - grammar_buf_in.close(); - } -#endif - - // print some stats - score_t score_avg = score_sum/(score_t)in_sz; - score_t model_avg = model_sum/(score_t)in_sz; - score_t score_diff, model_diff; - if (t > 0) { - score_diff = score_avg - all_scores[t-1].first; - model_diff = model_avg - all_scores[t-1].second; - } else { - score_diff = score_avg; - model_diff = model_avg; - } - - unsigned nonz = 0; - if (!quiet || hstreaming) nonz = (unsigned)lambdas.num_nonzero(); - - if (!quiet) { - cerr << _p5 << _p << "WEIGHTS" << endl; - for (vector<string>::iterator it = print_weights.begin(); it != print_weights.end(); it++) { - cerr << setw(18) << *it << " = " << lambdas.get(FD::Convert(*it)) << endl; - } - cerr << " ---" << endl; - cerr << _np << " 1best avg score: " << score_avg; - cerr << _p << " (" << score_diff << ")" << endl; - cerr << _np << " 1best avg model score: " << model_avg; - cerr << _p << " (" << model_diff << ")" << endl; - cerr << " avg # pairs: "; - cerr << _np << npairs/(float)in_sz << endl; - cerr << " avg # rank err: "; - cerr << rank_errors/(float)in_sz << endl; -#ifndef DTRAIN_FASTER_PERCEPTRON - cerr << " avg # margin viol: "; - cerr << margin_violations/(float)in_sz << endl; -#endif - cerr << " non0 feature count: " << nonz << endl; - cerr << " avg list sz: " << list_sz/(float)in_sz << endl; - cerr << " avg f count: " << f_count/(float)list_sz << endl; - } - - if (hstreaming) { - rep.update_counter("Score 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(score_avg*DTRAIN_SCALE)); - rep.update_counter("Model 1best avg #"+boost::lexical_cast<string>(t+1), (unsigned)(model_avg*DTRAIN_SCALE)); - rep.update_counter("Pairs avg #"+boost::lexical_cast<string>(t+1), (unsigned)((npairs/(weight_t)in_sz)*DTRAIN_SCALE)); - rep.update_counter("Rank errors avg #"+boost::lexical_cast<string>(t+1), (unsigned)((rank_errors/(weight_t)in_sz)*DTRAIN_SCALE)); - rep.update_counter("Margin violations avg #"+boost::lexical_cast<string>(t+1), (unsigned)((margin_violations/(weight_t)in_sz)*DTRAIN_SCALE)); - rep.update_counter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz); - rep.update_gcounter("Non zero feature count #"+boost::lexical_cast<string>(t+1), nonz); - } - - pair<score_t,score_t> remember; - remember.first = score_avg; - remember.second = model_avg; - all_scores.push_back(remember); - if (score_avg > max_score) { - max_score = score_avg; - best_it = t; - } - time (&end); - float time_diff = difftime(end, start); - overall_time += time_diff; - if (!quiet) { - cerr << _p2 << _np << "(time " << time_diff/60. << " min, "; - cerr << time_diff/in_sz << " s/S)" << endl; - } - if (t+1 != T && !quiet) cerr << endl; - - if (noup) break; - - // write weights to file - if (select_weights == "best" || keep) { - lambdas.init_vector(&dense_weights); - string w_fn = "weights." + boost::lexical_cast<string>(t) + ".gz"; - Weights::WriteToFile(w_fn, dense_weights, true); - } - - } // outer loop - - if (average) w_average /= (weight_t)T; - -#ifndef DTRAIN_LOCAL - unlink(grammar_buf_fn.c_str()); -#endif - - if (!noup) { - if (!quiet) cerr << endl << "Writing weights file to '" << output_fn << "' ..." << endl; - if (select_weights == "last" || average) { // last, average - WriteFile of(output_fn); // works with '-' - ostream& o = *of.stream(); - o.precision(17); - o << _np; - if (average) { - for (SparseVector<weight_t>::iterator it = w_average.begin(); it != w_average.end(); ++it) { - if (it->second == 0) continue; - o << FD::Convert(it->first) << '\t' << it->second << endl; - } - } else { - for (SparseVector<weight_t>::iterator it = lambdas.begin(); it != lambdas.end(); ++it) { - if (it->second == 0) continue; - o << FD::Convert(it->first) << '\t' << it->second << endl; - } - } - } else if (select_weights == "VOID") { // do nothing with the weights - } else { // best - if (output_fn != "-") { - CopyFile("weights."+boost::lexical_cast<string>(best_it)+".gz", output_fn); - } else { - ReadFile bestw("weights."+boost::lexical_cast<string>(best_it)+".gz"); - string o; - cout.precision(17); - cout << _np; - while(getline(*bestw, o)) cout << o << endl; - } - if (!keep) { - for (unsigned i = 0; i < T; i++) { - string s = "weights." + boost::lexical_cast<string>(i) + ".gz"; - unlink(s.c_str()); - } - } - } - if (output_fn == "-" && hstreaming) cout << "__SHARD_COUNT__\t1" << endl; - if (!quiet) cerr << "done" << endl; - } - - if (!quiet) { - cerr << _p5 << _np << endl << "---" << endl << "Best iteration: "; - cerr << best_it+1 << " [SCORE '" << scorer_str << "'=" << max_score << "]." << endl; - cerr << "This took " << overall_time/60. << " min." << endl; - } -} - |