- require 'zipf' !!! %html %head %title Debug view (Session ##{session_key}) %link(rel="stylesheet" type="text/css" href="debug.css") %script{:src =>"http://ajax.googleapis.com/ajax/libs/jquery/1.11.2/jquery.min.js", :charset=>"utf-8"} %script{:src => "http://postedit.cl.uni-heidelberg.de/js/debug.js"} %body %h1 Debug view %h2 Session [##{session_key}] - if pairwise_ranking_data["kbest"].empty? %p.red %strong No data to show! %ul %li %a{ :href => "#controls" } Controls %li %a{ :href => "#post_edit" } Post-edit & machine translation %li %a{ :href => "#meta" } Meta %li %a{ :href => "#rules" } Learned rules %li %a{ :href => "#pairwise_ranking" } Pairwise ranking %hr /=######################################################################### %h2#controls Controls %h3 Reset %p %strong [Server reply] %span#control_reply %ul %li %a.ajax{:tgt => "/reset_progress", :href => "#controls"} Reset progress %li %a.ajax{:tgt => "/reset_weights", :href => "#controls"} Reset weights %li %a.ajax{:tgt => "/reset_extractor", :href => "#controls"} Reset extractor %li %a.ajax{:tgt => "/reset_new_rules", :href => "#controls"} Reset new rules %li %a.ajax{:tgt => "/shutdown", :href => "#controls"} Initiate shutdown %h3 Learning rate %p Default for dense features: 1.0, for sparse features: 1.0e-05 %select - [1000,100,10,1,0.1,0.01,0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001,0.000000001,0.0000000001].each do |i| %option.ajax{:value => i, :tgt => "/set_learning_rate/#{i}"} #{i} %em dense features
%select - [1000,100,10,1,0.1,0.01,0.001,0.0001,0.00001,0.000001,0.0000001,0.00000001,0.000000001,0.0000000001].each do |i| %option.ajax{:value => i, :tgt => "/set_learning_rate/sparse/#{i}"} #{i} %em sparse features %p %a{ :href => "#" } ^ up %hr /=######################################################################### %h2#post_edit Post-edit & machine translation %p#svg_b64 #{data["svg"][progress]} %div#svg %table %tr %td.noborder %strong progress: %td.left #{[0,progress].max} %tr %td.noborder %strong MT Input %td.left #{data["source_segments"][[0,progress].max]} %tr %td.noborder %strong Raw source %td.left #{data["raw_source_segments"][[0,progress].max]} %tr %td.noborder %strong Post-edit %td.left #{data["post_edits_raw"][progress]} %tr %td.noborder %strong Post-edit (processed) %td.left #{data["post_edits"][progress]} %tr %td.noborder %strong Original MT %td.left #{data["mt_raw"][progress]} %tr %td.noborder %strong Displayed MT %td.left #{data["mt"][progress]} %tr %td.noborder %strong Best match (BLEU=#{(pairwise_ranking_data["best_match_score"]*100).round(2)}%) %td.left #{pairwise_ranking_data["best_match"]} %h2 Derivation %pre #{data["derivations"][progress]} %h3 Processed - if data["derivations_proc"][progress] %pre #{JSON.pretty_generate(JSON.parse(data["derivations_proc"][progress]))} %h2 Client reply - if data["feedback"][progress] %pre #{JSON.pretty_generate(JSON.parse(data["feedback"][progress]))} %p %a{ :href => "#" } ^ up %hr /=######################################################################### %h2#meta Meta %p k: #{pairwise_ranking_data["samples_size"]} %p number of updates: #{pairwise_ranking_data["num_up"]} %p updated features: #{pairwise_ranking_data["updated_features"]} %p learning rate: #{pairwise_ranking_data["learning_rate"]} %p learning rate (sparse): #{pairwise_ranking_data["learning_rate_sparse"]} %p duration: #{data["durations"][progress]}ms %p updated: #{data["updated"][progress]} %p %a{ :href => "#" } ^ up %hr /=######################################################################### %h2#rules New & known rules %pre #{additional_rules.join("\n")} %h3 Rejected [known] rules %pre #{rejected_rules.join("\n")} %p %a{ :href => "#" } ^ up %hr /=######################################################################### %h2#pairwise_ranking Pairwise ranking updates %h3 K-best list %pre [BLEU score | Model score | Original rank | \|e\| | Translation \n Features] %p.red In red: Update needed, i.e. "any of the above hypotheses has a lower model score" %ol - kbest = [] - pairwise_ranking_data["kbest"].each { |i| x=splitpipe(i); kbest << [ x[0].to_f, x[1].to_f, x[2].to_i, x[3], x[4] ] } - kbest.sort! { |i,j| j[0] <=> i[0] } - kbest.each_with_index do |k,j| - b = kbest[0,j].map { |l| l[0]>k[0] && l[1] %p{:style=>"font-size:80%"} #{k[3]} - else %li %strong #{"%.2f"%(k[0].to_f*100)} | #{k[1]} | #{k[2]} | #{k[4].split.size} | #{k[4]}
%p{:style=>"font-size:80%"} #{k[3]} - if [9,89].include? j %hr %h3 Weight updates %table %tr %th Feature %th Before %th After %th Diff. %th Raw diff. - pairwise_ranking_data["weights_before"].default = 0 - pairwise_ranking_data["weights_after"].keys.each.sort { |a,b| a[0] <=> b[0] }.each do |k| %tr %td.noborder #{k} %td #{"%+.3f"%pairwise_ranking_data["weights_before"][k].round(4)} %td #{"%+.3f"%pairwise_ranking_data["weights_after"][k].round(4)} - diff = pairwise_ranking_data["weights_after"][k]-pairwise_ranking_data["weights_before"][k] - if diff < 0 %td.red #{"%+.3f"%(diff).round(4)} - elsif diff > 0 %td.green #{"%+.3f"%(diff).round(4)} - else %td #{"%+.3f"%(diff).round(4)} - if !k.start_with? "R:" %td #{"%+.1f"%((pairwise_ranking_data["weights_after"][k]-pairwise_ranking_data["weights_before"][k])/pairwise_ranking_data["learning_rate"]).round(2)} - else %td #{"%+.1f"%((pairwise_ranking_data["weights_after"][k]-pairwise_ranking_data["weights_before"][k])/pairwise_ranking_data["learning_rate_sparse"]).round(2)} %h3 Features explained %table %tr %td.noborder EgivenFCoherent (rule) %td.left -log10[ c(e, f) / sample c(f) ] %tr %td.noborder NewRule (rule) %td.left Only feature of additional rules, weight fixed at 1 %tr %td.noborder KnownRule (rule) %td.left Added to existing rules if they could be extracted from previous post-edits %tr %td.noborder OOVFix (rule) %td.left Manually added rules to fix OOV words %tr %td.noborder Glue %td.left Absolute number of rules used from glue grammar %tr %td.noborder IsSingletonF/E (rule) %td.left true|false (1|0) (sum) %tr %td.noborder IsSingletonFE (rule) %td.left true|false (1|0) (sum) %tr %td.noborder LanguageModel %td.left -log10[ score ] %tr %td.noborder LanguageModel_OOV %td.left Abs. count of OOV unigrams %tr %td.noborder MaxLexFgivenE (rule) %td.left Sum_f -log10(maxScore) (maxScore = max_e(ttable(f)) %tr %td.noborder MaxLexEgivenF (rule) %td.left Sum_e -log10(maxScore) (maxScore = max_f(ttable(e)) %tr %td.noborder PassThrough %td.left Absolute count of used PassThrough rules (1 per word) %tr %td.noborder SampleCountF (rule) %td.left log10 [ sample c(f) ] %tr %td.noborder WordPenalty %td.left log_10(e)*|e| = 1/log(10) * |e| (*-1) = -0.43429448190325176*|e| %tr %td.noborder SourceWordPenalty (per edge/rule) %td.left ^^^ (|e| <=> |f|) %tr %td.noborder R:* %td.left Rule indicator features, sum over full derivation per rule %tr %td.noborder Shape_* %td.left Indicator features for rule shapes %tr %td.noborder IsSupportedOnline %td.left Counts how many rules have support from local context (Denkowski) %p %a{ :href => "#" } ^ up