#include #include #include #include #include #include "fdict.h" #include "hg.h" #include "kbest.h" #include "hg_io.h" #include "filelib.h" #include "inside_outside.h" #include "viterbi.h" #include "viterbi_envelope.h" #include "line_optimizer.h" #include "scorer.h" using namespace std; using boost::shared_ptr; class OptTest : public testing::Test { protected: virtual void SetUp() { } virtual void TearDown() { } }; const char* ref11 = "australia reopens embassy in manila"; const char* ref12 = "( afp , manila , january 2 ) australia reopened its embassy in the philippines today , which was shut down about seven weeks ago due to what was described as a specific threat of a terrorist attack ."; const char* ref21 = "australia reopened manila embassy"; const char* ref22 = "( agence france-presse , manila , 2nd ) - australia reopened its embassy in the philippines today . the embassy was closed seven weeks ago after what was described as a specific threat of a terrorist attack ."; const char* ref31 = "australia to reopen embassy in manila"; const char* ref32 = "( afp report from manila , january 2 ) australia reopened its embassy in the philippines today . seven weeks ago , the embassy was shut down due to so - called confirmed terrorist attack threats ."; const char* ref41 = "australia to re - open its embassy to manila"; const char* ref42 = "( afp , manila , thursday ) australia reopens its embassy to manila , which was closed for the so - called \" clear \" threat of terrorist attack 7 weeks ago ."; TEST_F(OptTest, TestCheckNaN) { double x = 0; double y = 0; double z = x / y; EXPECT_EQ(true, isnan(z)); } TEST_F(OptTest,TestViterbiEnvelope) { shared_ptr a1(new Segment(-1, 0)); shared_ptr b1(new Segment(1, 0)); shared_ptr a2(new Segment(-1, 1)); shared_ptr b2(new Segment(1, -1)); vector > sa; sa.push_back(a1); sa.push_back(b1); vector > sb; sb.push_back(a2); sb.push_back(b2); ViterbiEnvelope a(sa); cerr << a << endl; ViterbiEnvelope b(sb); ViterbiEnvelope c = a; c *= b; cerr << a << " (*) " << b << " = " << c << endl; EXPECT_EQ(3, c.size()); } TEST_F(OptTest,TestViterbiEnvelopeInside) { const string json = "{\"rules\":[1,\"[X] ||| a\",2,\"[X] ||| A [1]\",3,\"[X] ||| c\",4,\"[X] ||| C [1]\",5,\"[X] ||| [1] B [2]\",6,\"[X] ||| [1] b [2]\",7,\"[X] ||| X [1]\",8,\"[X] ||| Z [1]\"],\"features\":[\"f1\",\"f2\",\"Feature_1\",\"Feature_0\",\"Model_0\",\"Model_1\",\"Model_2\",\"Model_3\",\"Model_4\",\"Model_5\",\"Model_6\",\"Model_7\"],\"edges\":[{\"tail\":[],\"feats\":[],\"rule\":1}],\"node\":{\"in_edges\":[0]},\"edges\":[{\"tail\":[0],\"feats\":[0,-0.8,1,-0.1],\"rule\":2}],\"node\":{\"in_edges\":[1]},\"edges\":[{\"tail\":[],\"feats\":[1,-1],\"rule\":3}],\"node\":{\"in_edges\":[2]},\"edges\":[{\"tail\":[2],\"feats\":[0,-0.2,1,-0.1],\"rule\":4}],\"node\":{\"in_edges\":[3]},\"edges\":[{\"tail\":[1,3],\"feats\":[0,-1.2,1,-0.2],\"rule\":5},{\"tail\":[1,3],\"feats\":[0,-0.5,1,-1.3],\"rule\":6}],\"node\":{\"in_edges\":[4,5]},\"edges\":[{\"tail\":[4],\"feats\":[0,-0.5,1,-0.8],\"rule\":7},{\"tail\":[4],\"feats\":[0,-0.7,1,-0.9],\"rule\":8}],\"node\":{\"in_edges\":[6,7]}}"; Hypergraph hg; istringstream instr(json); HypergraphIO::ReadFromJSON(&instr, &hg); SparseVector wts; wts.set_value(FD::Convert("f1"), 0.4); wts.set_value(FD::Convert("f2"), 1.0); hg.Reweight(wts); vector, prob_t> > list; std::vector > features; KBest::KBestDerivations, ESentenceTraversal> kbest(hg, 10); for (int i = 0; i < 10; ++i) { const KBest::KBestDerivations, ESentenceTraversal>::Derivation* d = kbest.LazyKthBest(hg.nodes_.size() - 1, i); if (!d) break; cerr << log(d->score) << " ||| " << TD::GetString(d->yield) << " ||| " << d->feature_values << endl; } SparseVector dir; dir.set_value(FD::Convert("f1"), 1.0); ViterbiEnvelopeWeightFunction wf(wts, dir); ViterbiEnvelope env = Inside(hg, NULL, wf); cerr << env << endl; const vector >& segs = env.GetSortedSegs(); dir *= segs[1]->x; wts += dir; hg.Reweight(wts); KBest::KBestDerivations, ESentenceTraversal> kbest2(hg, 10); for (int i = 0; i < 10; ++i) { const KBest::KBestDerivations, ESentenceTraversal>::Derivation* d = kbest2.LazyKthBest(hg.nodes_.size() - 1, i); if (!d) break; cerr << log(d->score) << " ||| " << TD::GetString(d->yield) << " ||| " << d->feature_values << endl; } for (int i = 0; i < segs.size(); ++i) { cerr << "seg=" << i << endl; vector trans; segs[i]->ConstructTranslation(&trans); cerr << TD::GetString(trans) << endl; } } TEST_F(OptTest, TestS1) { int fPhraseModel_0 = FD::Convert("PhraseModel_0"); int fPhraseModel_1 = FD::Convert("PhraseModel_1"); int fPhraseModel_2 = FD::Convert("PhraseModel_2"); int fLanguageModel = FD::Convert("LanguageModel"); int fWordPenalty = FD::Convert("WordPenalty"); int fPassThrough = FD::Convert("PassThrough"); SparseVector wts; wts.set_value(fWordPenalty, 4.25); wts.set_value(fLanguageModel, -1.1165); wts.set_value(fPhraseModel_0, -0.96); wts.set_value(fPhraseModel_1, -0.65); wts.set_value(fPhraseModel_2, -0.77); wts.set_value(fPassThrough, -10.0); vector to_optimize; to_optimize.push_back(fWordPenalty); to_optimize.push_back(fLanguageModel); to_optimize.push_back(fPhraseModel_0); to_optimize.push_back(fPhraseModel_1); to_optimize.push_back(fPhraseModel_2); Hypergraph hg; ReadFile rf("./test_data/0.json.gz"); HypergraphIO::ReadFromJSON(rf.stream(), &hg); hg.Reweight(wts); Hypergraph hg2; ReadFile rf2("./test_data/1.json.gz"); HypergraphIO::ReadFromJSON(rf2.stream(), &hg2); hg2.Reweight(wts); vector > refs1(4); TD::ConvertSentence(ref11, &refs1[0]); TD::ConvertSentence(ref21, &refs1[1]); TD::ConvertSentence(ref31, &refs1[2]); TD::ConvertSentence(ref41, &refs1[3]); vector > refs2(4); TD::ConvertSentence(ref12, &refs2[0]); TD::ConvertSentence(ref22, &refs2[1]); TD::ConvertSentence(ref32, &refs2[2]); TD::ConvertSentence(ref42, &refs2[3]); ScoreType type = ScoreTypeFromString("ibm_bleu"); SentenceScorer* scorer1 = SentenceScorer::CreateSentenceScorer(type, refs1); SentenceScorer* scorer2 = SentenceScorer::CreateSentenceScorer(type, refs2); vector envs(2); RandomNumberGenerator rng; vector > axes; LineOptimizer::CreateOptimizationDirections( to_optimize, 10, &rng, &axes); assert(axes.size() == 10 + to_optimize.size()); for (int i = 0; i < axes.size(); ++i) cerr << axes[i] << endl; const SparseVector& axis = axes[0]; cerr << "Computing Viterbi envelope using inside algorithm...\n"; cerr << "axis: " << axis << endl; clock_t t_start=clock(); ViterbiEnvelopeWeightFunction wf(wts, axis); envs[0] = Inside(hg, NULL, wf); envs[1] = Inside(hg2, NULL, wf); vector es(2); scorer1->ComputeErrorSurface(envs[0], &es[0]); scorer2->ComputeErrorSurface(envs[1], &es[1]); cerr << envs[0].size() << " " << envs[1].size() << endl; cerr << es[0].size() << " " << es[1].size() << endl; envs.clear(); clock_t t_env=clock(); float score; double m = LineOptimizer::LineOptimize(es, LineOptimizer::MAXIMIZE_SCORE, &score); clock_t t_opt=clock(); cerr << "line optimizer returned: " << m << " (SCORE=" << score << ")\n"; EXPECT_FLOAT_EQ(0.48719698, score); SparseVector res = axis; res *= m; res += wts; cerr << "res: " << res << endl; cerr << "ENVELOPE PROCESSING=" << (static_cast(t_env - t_start) / 1000.0) << endl; cerr << " LINE OPTIMIZATION=" << (static_cast(t_opt - t_env) / 1000.0) << endl; hg.Reweight(res); hg2.Reweight(res); vector t1,t2; ViterbiESentence(hg, &t1); ViterbiESentence(hg2, &t2); cerr << TD::GetString(t1) << endl; cerr << TD::GetString(t2) << endl; delete scorer1; delete scorer2; } int main(int argc, char **argv) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }