#include "line_optimizer.h" #include #include #include "sparse_vector.h" #include "scorer.h" using namespace std; typedef ErrorSurface::const_iterator ErrorIter; // sort by increasing x-ints struct IntervalComp { bool operator() (const ErrorIter& a, const ErrorIter& b) const { return a->x < b->x; } }; double LineOptimizer::LineOptimize( const vector& surfaces, const LineOptimizer::ScoreType type, float* best_score, const double epsilon) { // cerr << "MIN=" << MINIMIZE_SCORE << " MAX=" << MAXIMIZE_SCORE << " MINE=" << type << endl; vector all_ints; for (vector::const_iterator i = surfaces.begin(); i != surfaces.end(); ++i) { const ErrorSurface& surface = *i; for (ErrorIter j = surface.begin(); j != surface.end(); ++j) all_ints.push_back(j); } sort(all_ints.begin(), all_ints.end(), IntervalComp()); double last_boundary = all_ints.front()->x; Score* acc = all_ints.front()->delta->GetZero(); float& cur_best_score = *best_score; cur_best_score = (type == MAXIMIZE_SCORE ? -numeric_limits::max() : numeric_limits::max()); bool left_edge = true; double pos = numeric_limits::quiet_NaN(); for (vector::iterator i = all_ints.begin(); i != all_ints.end(); ++i) { const ErrorSegment& seg = **i; assert(seg.delta); if (seg.x - last_boundary > epsilon) { float sco = acc->ComputeScore(); if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || (type == MINIMIZE_SCORE && sco < cur_best_score) ) { cur_best_score = sco; if (left_edge) { pos = seg.x - 0.1; left_edge = false; } else { pos = last_boundary + (seg.x - last_boundary) / 2; } // cerr << "NEW BEST: " << pos << " (score=" << cur_best_score << ")\n"; } // string xx; acc->ScoreDetails(&xx); cerr << "---- " << xx; // cerr << "---- s=" << sco << "\n"; last_boundary = seg.x; } // cerr << "x-boundary=" << seg.x << "\n"; acc->PlusEquals(*seg.delta); } float sco = acc->ComputeScore(); if ((type == MAXIMIZE_SCORE && sco > cur_best_score) || (type == MINIMIZE_SCORE && sco < cur_best_score) ) { cur_best_score = sco; if (left_edge) { pos = 0; } else { pos = last_boundary + 1000.0; } } delete acc; return pos; } void LineOptimizer::RandomUnitVector(const vector& features_to_optimize, SparseVector* axis, RandomNumberGenerator* rng) { axis->clear(); for (int i = 0; i < features_to_optimize.size(); ++i) axis->set_value(features_to_optimize[i], rng->next() - 0.5); (*axis) /= axis->l2norm(); } void LineOptimizer::CreateOptimizationDirections( const vector& features_to_optimize, int additional_random_directions, RandomNumberGenerator* rng, vector >* dirs) { const int num_directions = features_to_optimize.size() + additional_random_directions; dirs->resize(num_directions); for (int i = 0; i < num_directions; ++i) { SparseVector& axis = (*dirs)[i]; if (i < features_to_optimize.size()) axis.set_value(features_to_optimize[i], 1.0); else RandomUnitVector(features_to_optimize, &axis, rng); } cerr << "Generated " << num_directions << " total axes to optimize along.\n"; }