#ifndef VALUE_ARRAY_H
#define VALUE_ARRAY_H
//TODO: option for non-constructed version (type_traits pod?), option for small array optimization (if sz < N, store inline in union, see small_vector.h)
#include <cstdlib>
#include <algorithm>
#include <new>
#include <boost/range.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits.hpp>
#include <cstring>
#ifdef USE_BOOST_SERIALIZE
# include <boost/serialization/split_member.hpp>
# include <boost/serialization/access.hpp>
#endif
//TODO: use awesome type traits (and/or policy typelist argument) to provide these only when possible?
#define VALUE_ARRAY_ADD 1
#define VALUE_ARRAY_MUL 1
#define VALUE_ARRAY_BITWISE 0
#define VALUE_ARRAY_OSTREAM 1
#if VALUE_ARRAY_OSTREAM
# include <iostream>
#endif
// valarray like in that size is fixed (so saves space compared to vector), but same interface as vector (less resize/push_back/insert, of course)
template <class T, class A = std::allocator<T> >
class ValueArray : A // private inheritance so stateless allocator adds no size.
{
typedef ValueArray<T,A> Self;
public:
#if VALUE_ARRAY_OSTREAM
friend inline std::ostream & operator << (std::ostream &o,Self const& s) {
o<<'[';
for (unsigned i=0,e=s.size();i<e;++i) {
if (i) o<<' ';
o<<s[i];
}
o<<']';
return o;
}
#endif
static const int SV_MAX=sizeof(T)/sizeof(T*)>1?sizeof(T)/sizeof(T*):1;
//space optimization: SV_MAX T will fit inside what would otherwise be a pointer to heap data. todo in the far future if bored.
typedef T value_type;
typedef T& reference;
typedef T const& const_reference;
typedef T* iterator;
typedef T const* const_iterator;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
size_type size() const { return sz; }
bool empty() const { return size() == 0; }
iterator begin() { return array; }
iterator end() { return array + size(); }
const_iterator begin() const { return array; }
const_iterator end() const { return array + size(); }
reference operator[](size_type pos) { return array[pos]; }
const_reference operator[](size_type pos) const { return array[pos]; }
reference at(size_type pos) { return array[pos]; }
const_reference at(size_type pos) const { return array[pos]; }
reference front() { return array[0]; }
reference back() { return array[sz-1]; }
const_reference front() const { return array[0]; }
const_reference back() const { return array[sz-1]; }
ValueArray() : sz(0), array(NULL) {}
explicit ValueArray(size_type s, const_reference t = T())
{
init(s,t);
}
protected:
inline void init(size_type s, const_reference t = T()) {
sz=s;
array=s ? A::allocate(s) : 0;
for (size_type i = 0; i != sz; ++i) { A::construct(array + i,t); }
}
public:
void resize(size_type s, const_reference t = T()) {
clear();
init(s,t);
}
template <class I>
ValueArray(I itr, I end)
: sz(std::distance(itr,end))
, array(A::allocate(sz))
{
copy_construct(itr,end,array);
}
~ValueArray() {
clear();
}
#undef VALUE_ARRAY_OPEQ
#define VALUE_ARRAY_OPEQ(op) template <class T2,class A2> Self & operator op (ValueArray<T2,A2> const& o) { assert(sz==o.sz); for (int i=0,e=sz;i<=e;++i) array[i] op o.array[i]; return *this; }
#if VALUE_ARRAY_ADD
VALUE_ARRAY_OPEQ(+=)
VALUE_ARRAY_OPEQ(-=)
#endif
#if VALUE_ARRAY_MUL
VALUE_ARRAY_OPEQ(*=)
VALUE_ARRAY_OPEQ(/=)
#endif
#if VALUE_ARRAY_BITWISE
VALUE_ARRAY_OPEQ(|=)
VALUE_ARRAY_OPEQ(*=)
#endif
#undef VALUE_ARRAY_OPEQ
#undef VALUE_ARRAY_BINOP
#define VALUE_ARRAY_BINOP(op,opeq) template <class T2,class A2> friend inline Self operator op (Self x,ValueArray<T2,A2> const& y) { x opeq y; return x; }
#if VALUE_ARRAY_ADD
VALUE_ARRAY_BINOP(+,+=)
VALUE_ARRAY_BINOP(-,-=)
#endif
#if VALUE_ARRAY_MUL
VALUE_ARRAY_BINOP(*,*=)
VALUE_ARRAY_BINOP(/,/=)
#endif
#if VALUE_ARRAY_BITWISE
VALUE_ARRAY_BINOP(|,|=)
VALUE_ARRAY_BINOP(*,*=)
#endif
#undef VALUE_ARRAY_BINOP
void clear()
{
for (size_type i = sz; i != 0; --i) {
A::destroy(array + (i - 1));
}
if (array != NULL) A::deallocate(array,sz);
}
void swap(ValueArray& other)
{
std::swap(sz,other.sz);
std::swap(array,other.array);
}
ValueArray(ValueArray const& other)
: A(other)
, sz(other.sz)
, array(A::allocate(sz))
{
copy_construct(other.begin(),other.end(),array);
}
ValueArray& operator=(ValueArray const& other)
{
ValueArray(other).swap(*this);
return *this;
}
template <class Range>
ValueArray( Range const& v
, typename boost::disable_if< boost::is_integral<Range> >::type* = 0)
: sz(boost::size(v))
, array(A::allocate(sz))
{
copy_construct(boost::begin(v),boost::end(v),array);
}
template <class Range> typename
boost::disable_if<
boost::is_integral<Range>
, ValueArray>::type& operator=(Range const& other)
{
ValueArray(other).swap(*this);
return *this;
}
private:
//friend class boost::serialization::access;
template <class I1, class I2>
void copy_construct(I1 itr, I1 end, I2 into)
{
for (; itr != end; ++itr, ++into) A::construct(into,*itr);
}
template <class Archive>
void save(Archive& ar, unsigned int version) const
{
ar << sz;
for (size_type i = 0; i != sz; ++i) ar << at(i);
}
template <class Archive>
void load(Archive& ar, unsigned int version)
{
size_type s;
ar >> s;
ValueArray v(s);
for (size_type i = 0; i != s; ++i) ar >> v[i];
this->swap(v);
}
#ifdef USE_BOOST_SERIALIZE
BOOST_SERIALIZATION_SPLIT_MEMBER()
#endif
size_type sz;
pointer array;
};
template <class T, class A>
bool operator==(ValueArray<T,A> const& v1, ValueArray<T,A> const& v2)
{
return (v1.size() == v2.size()) and
std::equal(v1.begin(),v1.end(),v2.begin());
}
template <class T,class A>
bool operator< (ValueArray<T,A> const& v1, ValueArray<T,A> const& v2)
{
return std::lexicographical_compare( v1.begin()
, v1.end()
, v2.begin()
, v2.end() );
}
template <class T,class A>
void memcpy(void *out,ValueArray<T,A> const& v) {
std::memcpy(out,v.begin(),v.size()*sizeof(T));
}
#endif