#include #include #include #include #include "mathvec.h" #include "lbfgs.h" #include "maxent.h" using namespace std; const static int M = LBFGS_M; const static double LINE_SEARCH_ALPHA = 0.1; const static double LINE_SEARCH_BETA = 0.5; // stopping criteria int LBFGS_MAX_ITER = 300; const static double MIN_GRAD_NORM = 0.0001; double ME_Model::backtracking_line_search( const Vec & x0, const Vec & grad0, const double f0, const Vec & dx, Vec & x, Vec & grad1) { double t = 1.0 / LINE_SEARCH_BETA; double f; do { t *= LINE_SEARCH_BETA; x = x0 + t * dx; f = FunctionGradient(x.STLVec(), grad1.STLVec()); // cout << "*"; } while (f > f0 + LINE_SEARCH_ALPHA * t * dot_product(dx, grad0)); return f; } // // Jorge Nocedal, "Updating Quasi-Newton Matrices With Limited Storage", // Mathematics of Computation, Vol. 35, No. 151, pp. 773-782, 1980. // Vec approximate_Hg(const int iter, const Vec & grad, const Vec s[], const Vec y[], const double z[]) { int offset, bound; if (iter <= M) { offset = 0; bound = iter; } else { offset = iter - M; bound = M; } Vec q = grad; double alpha[M], beta[M]; for (int i = bound - 1; i >= 0; i--) { const int j = (i + offset) % M; alpha[i] = z[j] * dot_product(s[j], q); q += -alpha[i] * y[j]; } if (iter > 0) { const int j = (iter - 1) % M; const double gamma = ((1.0 / z[j]) / dot_product(y[j], y[j])); // static double gamma; // if (gamma == 0) gamma = ((1.0 / z[j]) / dot_product(y[j], y[j])); q *= gamma; } for (int i = 0; i <= bound - 1; i++) { const int j = (i + offset) % M; beta[i] = z[j] * dot_product(y[j], q); q += s[j] * (alpha[i] - beta[i]); } return q; } vector ME_Model::perform_LBFGS(const vector & x0) { const size_t dim = x0.size(); Vec x = x0; Vec grad(dim), dx(dim); double f = FunctionGradient(x.STLVec(), grad.STLVec()); Vec s[M], y[M]; double z[M]; // rho for (int iter = 0; iter < LBFGS_MAX_ITER; iter++) { fprintf(stderr, "%3d obj(err) = %f (%6.4f)", iter+1, -f, _train_error); if (_nheldout > 0) { const double heldout_logl = heldout_likelihood(); fprintf(stderr, " heldout_logl(err) = %f (%6.4f)", heldout_logl, _heldout_error); } fprintf(stderr, "\n"); if (sqrt(dot_product(grad, grad)) < MIN_GRAD_NORM) break; dx = -1 * approximate_Hg(iter, grad, s, y, z); Vec x1(dim), grad1(dim); f = backtracking_line_search(x, grad, f, dx, x1, grad1); s[iter % M] = x1 - x; y[iter % M] = grad1 - grad; z[iter % M] = 1.0 / dot_product(y[iter % M], s[iter % M]); x = x1; grad = grad1; } return x.STLVec(); }