#include "stringlib.h" #include #include #include #include #include using namespace std; void ParseTranslatorInput(const string& line, string* input, string* ref) { size_t hint = 0; if (line.find("{\"rules\":") == 0) { hint = line.find("}}"); if (hint == string::npos) { cerr << "Syntax error: " << line << endl; abort(); } hint += 2; } size_t pos = line.find("|||", hint); if (pos == string::npos) { *input = line; return; } ref->clear(); *input = line.substr(0, pos - 1); string rline = line.substr(pos + 4); if (rline.size() > 0) { assert(ref); *ref = rline; } } void ProcessAndStripSGML(string* pline, map* out) { map& meta = *out; string& line = *pline; string lline = *pline; if (lline.find(" must be lowercase!\n"; cerr << " " << *pline << endl; abort(); } if (lline.find(""); if (close == string::npos) return; // error size_t end = lline.find(""); string seg = Trim(lline.substr(4, close-4)); string text = line.substr(close+1, end - close - 1); for (size_t i = 1; i < seg.size(); i++) { if (seg[i] == '=' && seg[i-1] == ' ') { string less = seg.substr(0, i-1) + seg.substr(i); seg = less; i = 0; continue; } if (seg[i] == '=' && seg[i+1] == ' ') { string less = seg.substr(0, i+1); if (i+2 < seg.size()) less += seg.substr(i+2); seg = less; i = 0; continue; } } line = Trim(text); if (seg == "") return; for (size_t i = 1; i < seg.size(); i++) { if (seg[i] == '=') { string label = seg.substr(0, i); string val = seg.substr(i+1); if (val[0] == '"') { val = val.substr(1); size_t close = val.find('"'); if (close == string::npos) { cerr << "SGML parse error: missing \"\n"; seg = ""; i = 0; } else { seg = val.substr(close+1); val = val.substr(0, close); i = 0; } } else { size_t close = val.find(' '); if (close == string::npos) { seg = ""; i = 0; } else { seg = val.substr(close+1); val = val.substr(0, close); } } label = Trim(label); seg = Trim(seg); meta[label] = val; } } } string SGMLOpenSegTag(const map& attr) { ostringstream os; os << "::const_iterator it = attr.begin(); it != attr.end(); ++it) os << ' ' << it->first << '=' << '"' << it->second << '"'; os << '>'; return os.str(); } class MD5 { public: typedef unsigned int size_type; // must be 32bit MD5(); MD5(const std::string& text); void update(const unsigned char *buf, size_type length); void update(const char *buf, size_type length); MD5& finalize(); std::string hexdigest() const; private: void init(); typedef unsigned char uint1; // 8bit typedef unsigned int uint4; // 32bit enum {blocksize = 64}; // VC6 won't eat a const static int here void transform(const uint1 block[blocksize]); static void decode(uint4 output[], const uint1 input[], size_type len); static void encode(uint1 output[], const uint4 input[], size_type len); bool finalized; uint1 buffer[blocksize]; // bytes that didn't fit in last 64 byte chunk uint4 count[2]; // 64bit counter for number of bits (lo, hi) uint4 state[4]; // digest so far uint1 digest[16]; // the result // low level logic operations static inline uint4 F(uint4 x, uint4 y, uint4 z); static inline uint4 G(uint4 x, uint4 y, uint4 z); static inline uint4 H(uint4 x, uint4 y, uint4 z); static inline uint4 I(uint4 x, uint4 y, uint4 z); static inline uint4 rotate_left(uint4 x, int n); static inline void FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac); static inline void GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac); static inline void HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac); static inline void II(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac); }; // Constants for MD5Transform routine. #define S11 7 #define S12 12 #define S13 17 #define S14 22 #define S21 5 #define S22 9 #define S23 14 #define S24 20 #define S31 4 #define S32 11 #define S33 16 #define S34 23 #define S41 6 #define S42 10 #define S43 15 #define S44 21 /////////////////////////////////////////////// // F, G, H and I are basic MD5 functions. inline MD5::uint4 MD5::F(uint4 x, uint4 y, uint4 z) { return (x&y) | (~x&z); } inline MD5::uint4 MD5::G(uint4 x, uint4 y, uint4 z) { return (x&z) | (y&~z); } inline MD5::uint4 MD5::H(uint4 x, uint4 y, uint4 z) { return x^y^z; } inline MD5::uint4 MD5::I(uint4 x, uint4 y, uint4 z) { return y ^ (x | ~z); } // rotate_left rotates x left n bits. inline MD5::uint4 MD5::rotate_left(uint4 x, int n) { return (x << n) | (x >> (32-n)); } // FF, GG, HH, and II transformations for rounds 1, 2, 3, and 4. // Rotation is separate from addition to prevent recomputation. inline void MD5::FF(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a = rotate_left(a+ F(b,c,d) + x + ac, s) + b; } inline void MD5::GG(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a = rotate_left(a + G(b,c,d) + x + ac, s) + b; } inline void MD5::HH(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a = rotate_left(a + H(b,c,d) + x + ac, s) + b; } inline void MD5::II(uint4 &a, uint4 b, uint4 c, uint4 d, uint4 x, uint4 s, uint4 ac) { a = rotate_left(a + I(b,c,d) + x + ac, s) + b; } ////////////////////////////////////////////// // default ctor, just initailize MD5::MD5() { init(); } ////////////////////////////////////////////// // nifty shortcut ctor, compute MD5 for string and finalize it right away MD5::MD5(const std::string &text) { init(); update(text.c_str(), text.length()); finalize(); } ////////////////////////////// void MD5::init() { finalized=false; count[0] = 0; count[1] = 0; // load magic initialization constants. state[0] = 0x67452301; state[1] = 0xefcdab89; state[2] = 0x98badcfe; state[3] = 0x10325476; } ////////////////////////////// // decodes input (unsigned char) into output (uint4). Assumes len is a multiple of 4. void MD5::decode(uint4 output[], const uint1 input[], size_type len) { for (unsigned int i = 0, j = 0; j < len; i++, j += 4) output[i] = ((uint4)input[j]) | (((uint4)input[j+1]) << 8) | (((uint4)input[j+2]) << 16) | (((uint4)input[j+3]) << 24); } ////////////////////////////// // encodes input (uint4) into output (unsigned char). Assumes len is // a multiple of 4. void MD5::encode(uint1 output[], const uint4 input[], size_type len) { for (size_type i = 0, j = 0; j < len; i++, j += 4) { output[j] = input[i] & 0xff; output[j+1] = (input[i] >> 8) & 0xff; output[j+2] = (input[i] >> 16) & 0xff; output[j+3] = (input[i] >> 24) & 0xff; } } ////////////////////////////// // apply MD5 algo on a block void MD5::transform(const uint1 block[blocksize]) { uint4 a = state[0], b = state[1], c = state[2], d = state[3], x[16]; decode (x, block, blocksize); /* Round 1 */ FF (a, b, c, d, x[ 0], S11, 0xd76aa478); /* 1 */ FF (d, a, b, c, x[ 1], S12, 0xe8c7b756); /* 2 */ FF (c, d, a, b, x[ 2], S13, 0x242070db); /* 3 */ FF (b, c, d, a, x[ 3], S14, 0xc1bdceee); /* 4 */ FF (a, b, c, d, x[ 4], S11, 0xf57c0faf); /* 5 */ FF (d, a, b, c, x[ 5], S12, 0x4787c62a); /* 6 */ FF (c, d, a, b, x[ 6], S13, 0xa8304613); /* 7 */ FF (b, c, d, a, x[ 7], S14, 0xfd469501); /* 8 */ FF (a, b, c, d, x[ 8], S11, 0x698098d8); /* 9 */ FF (d, a, b, c, x[ 9], S12, 0x8b44f7af); /* 10 */ FF (c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF (b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF (a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF (d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF (c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF (b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ /* Round 2 */ GG (a, b, c, d, x[ 1], S21, 0xf61e2562); /* 17 */ GG (d, a, b, c, x[ 6], S22, 0xc040b340); /* 18 */ GG (c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG (b, c, d, a, x[ 0], S24, 0xe9b6c7aa); /* 20 */ GG (a, b, c, d, x[ 5], S21, 0xd62f105d); /* 21 */ GG (d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG (c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG (b, c, d, a, x[ 4], S24, 0xe7d3fbc8); /* 24 */ GG (a, b, c, d, x[ 9], S21, 0x21e1cde6); /* 25 */ GG (d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG (c, d, a, b, x[ 3], S23, 0xf4d50d87); /* 27 */ GG (b, c, d, a, x[ 8], S24, 0x455a14ed); /* 28 */ GG (a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG (d, a, b, c, x[ 2], S22, 0xfcefa3f8); /* 30 */ GG (c, d, a, b, x[ 7], S23, 0x676f02d9); /* 31 */ GG (b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ HH (a, b, c, d, x[ 5], S31, 0xfffa3942); /* 33 */ HH (d, a, b, c, x[ 8], S32, 0x8771f681); /* 34 */ HH (c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH (b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH (a, b, c, d, x[ 1], S31, 0xa4beea44); /* 37 */ HH (d, a, b, c, x[ 4], S32, 0x4bdecfa9); /* 38 */ HH (c, d, a, b, x[ 7], S33, 0xf6bb4b60); /* 39 */ HH (b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH (a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH (d, a, b, c, x[ 0], S32, 0xeaa127fa); /* 42 */ HH (c, d, a, b, x[ 3], S33, 0xd4ef3085); /* 43 */ HH (b, c, d, a, x[ 6], S34, 0x4881d05); /* 44 */ HH (a, b, c, d, x[ 9], S31, 0xd9d4d039); /* 45 */ HH (d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH (c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH (b, c, d, a, x[ 2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ II (a, b, c, d, x[ 0], S41, 0xf4292244); /* 49 */ II (d, a, b, c, x[ 7], S42, 0x432aff97); /* 50 */ II (c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II (b, c, d, a, x[ 5], S44, 0xfc93a039); /* 52 */ II (a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II (d, a, b, c, x[ 3], S42, 0x8f0ccc92); /* 54 */ II (c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II (b, c, d, a, x[ 1], S44, 0x85845dd1); /* 56 */ II (a, b, c, d, x[ 8], S41, 0x6fa87e4f); /* 57 */ II (d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II (c, d, a, b, x[ 6], S43, 0xa3014314); /* 59 */ II (b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II (a, b, c, d, x[ 4], S41, 0xf7537e82); /* 61 */ II (d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II (c, d, a, b, x[ 2], S43, 0x2ad7d2bb); /* 63 */ II (b, c, d, a, x[ 9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; // Zeroize sensitive information. memset(x, 0, sizeof x); } ////////////////////////////// // MD5 block update operation. Continues an MD5 message-digest // operation, processing another message block void MD5::update(const unsigned char input[], size_type length) { // compute number of bytes mod 64 size_type index = count[0] / 8 % blocksize; // Update number of bits if ((count[0] += (length << 3)) < (length << 3)) count[1]++; count[1] += (length >> 29); // number of bytes we need to fill in buffer size_type firstpart = 64 - index; size_type i; // transform as many times as possible. if (length >= firstpart) { // fill buffer first, transform memcpy(&buffer[index], input, firstpart); transform(buffer); // transform chunks of blocksize (64 bytes) for (i = firstpart; i + blocksize <= length; i += blocksize) transform(&input[i]); index = 0; } else i = 0; // buffer remaining input memcpy(&buffer[index], &input[i], length-i); } ////////////////////////////// // for convenience provide a verson with signed char void MD5::update(const char input[], size_type length) { update((const unsigned char*)input, length); } ////////////////////////////// // MD5 finalization. Ends an MD5 message-digest operation, writing the // the message digest and zeroizing the context. MD5& MD5::finalize() { static unsigned char padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; if (!finalized) { // Save number of bits unsigned char bits[8]; encode(bits, count, 8); // pad out to 56 mod 64. size_type index = count[0] / 8 % 64; size_type padLen = (index < 56) ? (56 - index) : (120 - index); update(padding, padLen); // Append length (before padding) update(bits, 8); // Store state in digest encode(digest, state, 16); // Zeroize sensitive information. memset(buffer, 0, sizeof buffer); memset(count, 0, sizeof count); finalized=true; } return *this; } ////////////////////////////// // return hex representation of digest as string std::string MD5::hexdigest() const { if (!finalized) return ""; char buf[33]; for (int i=0; i<16; i++) sprintf(buf+i*2, "%02x", digest[i]); buf[32]=0; return std::string(buf); } ////////////////////////////// std::string md5(const std::string& str) { MD5 md5 = MD5(str); return md5.hexdigest(); }