#include #include #include #include #include #include #include "filelib.h" #include "stringlib.h" #include "weights.h" #include "hg_io.h" #include "kbest.h" #include "viterbi.h" #include "ns.h" #include "ns_docscorer.h" #include "candidate_set.h" using namespace std; namespace po = boost::program_options; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("reference,r",po::value >(), "[REQD] Reference translation (tokenized text)") ("weights,w",po::value(), "[REQD] Weights files from current iterations") ("input,i",po::value()->default_value("-"), "Input file to map (- is STDIN)") ("evaluation_metric,m",po::value()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") ("kbest_repository,R",po::value(), "Accumulate k-best lists from previous iterations (parameter is path to repository)") ("kbest_size,k",po::value()->default_value(500u), "Top k-hypotheses to extract") ("cccp_iterations,I", po::value()->default_value(10u), "CCCP iterations (T')") ("ssd_iterations,J", po::value()->default_value(5u), "Stochastic subgradient iterations (T'')") ("eta", po::value()->default_value(1e-4), "Step size") ("regularization_strength,C", po::value()->default_value(1.0), "L2 regularization strength") ("alpha,a", po::value()->default_value(10.0), "Cost scale (alpha); alpha * [1-metric(y,y')]") ("help,h", "Help"); po::options_description dcmdline_options; dcmdline_options.add(opts); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); bool flag = false; if (!conf->count("reference")) { cerr << "Please specify one or more references using -r \n"; flag = true; } if (!conf->count("weights")) { cerr << "Please specify weights using -w \n"; flag = true; } if (flag || conf->count("help")) { cerr << dcmdline_options << endl; exit(1); } } struct GainFunction { explicit GainFunction(const EvaluationMetric* m) : metric(m) {} float operator()(const SufficientStats& eval_feats) const { float g = metric->ComputeScore(eval_feats); if (!metric->IsErrorMetric()) g = 1 - g; return g; } const EvaluationMetric* metric; }; template void CostAugmentedSearch(const GainFunc& gain, const training::CandidateSet& cs, const SparseVector& w, double alpha, SparseVector* fmap) { unsigned best_i = 0; double best = -numeric_limits::infinity(); for (unsigned i = 0; i < cs.size(); ++i) { double s = cs[i].fmap.dot(w) + alpha * gain(cs[i].eval_feats); if (s > best) { best = s; best_i = i; } } *fmap = cs[best_i].fmap; } // runs lines 4--15 of rampion algorithm int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); const string evaluation_metric = conf["evaluation_metric"].as(); EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric); DocumentScorer ds(metric, conf["reference"].as >()); cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; double goodsign = -1; double badsign = -goodsign; Hypergraph hg; string last_file; ReadFile in_read(conf["input"].as()); string kbest_repo; if (conf.count("kbest_repository")) { kbest_repo = conf["kbest_repository"].as(); MkDirP(kbest_repo); } istream &in=*in_read.stream(); const unsigned kbest_size = conf["kbest_size"].as(); const unsigned tp = conf["cccp_iterations"].as(); const unsigned tpp = conf["ssd_iterations"].as(); const double eta = conf["eta"].as(); const double reg = conf["regularization_strength"].as(); const double alpha = conf["alpha"].as(); SparseVector weights; { vector vweights; const string weightsf = conf["weights"].as(); Weights::InitFromFile(weightsf, &vweights); Weights::InitSparseVector(vweights, &weights); } string line, file; vector kis; cerr << "Loading hypergraphs...\n"; while(getline(in, line)) { istringstream is(line); int sent_id; is >> file >> sent_id; kis.resize(kis.size() + 1); training::CandidateSet& curkbest = kis.back(); string kbest_file; if (kbest_repo.size()) { ostringstream os; os << kbest_repo << "/kbest." << sent_id << ".txt.gz"; kbest_file = os.str(); if (FileExists(kbest_file)) curkbest.ReadFromFile(kbest_file); } // is >> file >> sent_id; ReadFile rf(file); if (kis.size() % 5 == 0) { cerr << '.'; } if (kis.size() % 200 == 0) { cerr << " [" << kis.size() << "]\n"; } HypergraphIO::ReadFromBinary(rf.stream(), &hg); hg.Reweight(weights); curkbest.AddKBestCandidates(hg, kbest_size, ds[sent_id]); if (kbest_file.size()) curkbest.WriteToFile(kbest_file); } cerr << "\nHypergraphs loaded.\n"; vector > goals(kis.size()); // f(x_i,y+,h+) SparseVector fear; // f(x,y-,h-) const GainFunction gain(metric); for (unsigned iterp = 1; iterp <= tp; ++iterp) { cerr << "CCCP Iteration " << iterp << endl; for (unsigned i = 0; i < goals.size(); ++i) CostAugmentedSearch(gain, kis[i], weights, goodsign * alpha, &goals[i]); for (unsigned iterpp = 1; iterpp <= tpp; ++iterpp) { cerr << " SSD Iteration " << iterpp << endl; for (unsigned i = 0; i < goals.size(); ++i) { CostAugmentedSearch(gain, kis[i], weights, badsign * alpha, &fear); weights -= weights * (eta * reg / goals.size()); weights += (goals[i] - fear) * eta; } } } vector w; weights.init_vector(&w); Weights::WriteToFile("-", w); return 0; }