#include #include #include #include #include #include #include #include #include #include "verbose.h" #include "hg.h" #include "prob.h" #include "inside_outside.h" #include "ff_register.h" #include "decoder.h" #include "filelib.h" #include "online_optimizer.h" #include "fdict.h" #include "weights.h" #include "sparse_vector.h" #include "sampler.h" #ifdef HAVE_MPI #include #include namespace mpi = boost::mpi; #endif using namespace std; namespace po = boost::program_options; void SanityCheck(const vector& w) { for (int i = 0; i < w.size(); ++i) { assert(!isnan(w[i])); assert(!isinf(w[i])); } } struct FComp { const vector& w_; FComp(const vector& w) : w_(w) {} bool operator()(int a, int b) const { return fabs(w_[a]) > fabs(w_[b]); } }; void ShowLargestFeatures(const vector& w) { vector fnums(w.size()); for (int i = 0; i < w.size(); ++i) fnums[i] = i; vector::iterator mid = fnums.begin(); mid += (w.size() > 10 ? 10 : w.size()); partial_sort(fnums.begin(), mid, fnums.end(), FComp(w)); cerr << "TOP FEATURES:"; for (vector::iterator i = fnums.begin(); i != mid; ++i) { cerr << ' ' << FD::Convert(*i) << '=' << w[*i]; } cerr << endl; } bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("input_weights,w",po::value(),"Input feature weights file") ("frozen_features,z",po::value(), "List of features not to optimize") ("training_data,t",po::value(),"Training data corpus") ("training_agenda,a",po::value(), "Text file listing a series of configuration files and the number of iterations to train using each configuration successively") ("minibatch_size_per_proc,s", po::value()->default_value(5), "Number of training instances evaluated per processor in each minibatch") ("optimization_method,m", po::value()->default_value("sgd"), "Optimization method (sgd)") ("random_seed,S", po::value(), "Random seed (if not specified, /dev/random will be used)") ("eta_0,e", po::value()->default_value(0.2), "Initial learning rate for SGD (eta_0)") ("L1,1","Use L1 regularization") ("regularization_strength,C", po::value()->default_value(1.0), "Regularization strength (C)"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || !conf->count("training_data") || !conf->count("training_agenda")) { cerr << dcmdline_options << endl; return false; } return true; } void ReadTrainingCorpus(const string& fname, int rank, int size, vector* c, vector* order) { ReadFile rf(fname); istream& in = *rf.stream(); string line; int id = 0; while(in) { getline(in, line); if (!in) break; if (id % size == rank) { c->push_back(line); order->push_back(id); } ++id; } } static const double kMINUS_EPSILON = -1e-6; struct TrainingObserver : public DecoderObserver { void Reset() { acc_grad.clear(); acc_obj = 0; total_complete = 0; } void SetLocalGradientAndObjective(vector* g, double* o) const { *o = acc_obj; for (SparseVector::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) (*g)[it->first] = it->second; } virtual void NotifyDecodingStart(const SentenceMetadata& smeta) { cur_model_exp.clear(); cur_obj = 0; state = 1; } // compute model expectations, denominator of objective virtual void NotifyTranslationForest(const SentenceMetadata& smeta, Hypergraph* hg) { assert(state == 1); state = 2; const prob_t z = InsideOutside, EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); cur_obj = log(z); cur_model_exp /= z; } // compute "empirical" expectations, numerator of objective virtual void NotifyAlignmentForest(const SentenceMetadata& smeta, Hypergraph* hg) { assert(state == 2); state = 3; SparseVector ref_exp; const prob_t ref_z = InsideOutside, EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); ref_exp /= ref_z; double log_ref_z; #if 0 if (crf_uniform_empirical) { log_ref_z = ref_exp.dot(feature_weights); } else { log_ref_z = log(ref_z); } #else log_ref_z = log(ref_z); #endif // rounding errors means that <0 is too strict if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; exit(1); } assert(!isnan(log_ref_z)); ref_exp -= cur_model_exp; acc_grad += ref_exp; acc_obj += (cur_obj - log_ref_z); } virtual void NotifyDecodingComplete(const SentenceMetadata& smeta) { if (state == 3) { ++total_complete; } else { } } void GetGradient(SparseVector* g) const { g->clear(); for (SparseVector::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) g->set_value(it->first, it->second); } int total_complete; SparseVector cur_model_exp; SparseVector acc_grad; double acc_obj; double cur_obj; int state; }; #ifdef HAVE_MPI namespace boost { namespace mpi { template<> struct is_commutative >, SparseVector > : mpl::true_ { }; } } // end namespace boost::mpi #endif bool LoadAgenda(const string& file, vector >* a) { ReadFile rf(file); istream& in = *rf.stream(); string line; while(in) { getline(in, line); if (!in) break; if (line.empty()) continue; if (line[0] == '#') continue; int sc = 0; if (line.size() < 3) return false; for (int i = 0; i < line.size(); ++i) { if (line[i] == ' ') ++sc; } if (sc != 1) { cerr << "Too many spaces in line: " << line << endl; return false; } size_t d = line.find(" "); pair x; x.first = line.substr(0,d); x.second = atoi(line.substr(d+1).c_str()); a->push_back(x); if (!FileExists(x.first)) { cerr << "Can't find file " << x.first << endl; return false; } } return true; } int main(int argc, char** argv) { #ifdef HAVE_MPI mpi::environment env(argc, argv); mpi::communicator world; const int size = world.size(); const int rank = world.rank(); #else const int size = 1; const int rank = 0; #endif if (size > 1) SetSilent(true); // turn off verbose decoder output register_feature_functions(); std::tr1::shared_ptr rng; po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; // load initial weights Weights weights; if (conf.count("input_weights")) weights.InitFromFile(conf["input_weights"].as()); vector frozen_fids; if (conf.count("frozen_features")) { ReadFile rf(conf["frozen_features"].as()); istream& in = *rf.stream(); string line; while(in) { getline(in, line); if (line.empty()) continue; if (line[0] == ' ' || line[line.size() - 1] == ' ') { line = Trim(line); } frozen_fids.push_back(FD::Convert(line)); } if (rank == 0) cerr << "Freezing " << frozen_fids.size() << " features.\n"; } vector corpus; vector ids; ReadTrainingCorpus(conf["training_data"].as(), rank, size, &corpus, &ids); assert(corpus.size() > 0); std::tr1::shared_ptr o; std::tr1::shared_ptr lr; const unsigned size_per_proc = conf["minibatch_size_per_proc"].as(); if (size_per_proc > corpus.size()) { cerr << "Minibatch size must be smaller than corpus size!\n"; return 1; } size_t total_corpus_size = 0; #ifdef HAVE_MPI reduce(world, corpus.size(), total_corpus_size, std::plus(), 0); #else total_corpus_size = corpus.size(); #endif if (rank == 0) { cerr << "Total corpus size: " << total_corpus_size << endl; const unsigned batch_size = size_per_proc * size; // TODO config lr.reset(new ExponentialDecayLearningRate(batch_size, conf["eta_0"].as())); const string omethod = conf["optimization_method"].as(); if (omethod == "sgd") { const double C = conf["regularization_strength"].as(); o.reset(new CumulativeL1OnlineOptimizer(lr, total_corpus_size, C)); } else { assert(!"fail"); } } if (conf.count("random_seed")) rng.reset(new MT19937(conf["random_seed"].as())); else rng.reset(new MT19937); SparseVector x; weights.InitSparseVector(&x); TrainingObserver observer; int write_weights_every_ith = 100; // TODO configure int titer = -1; vector > agenda; if (!LoadAgenda(conf["training_agenda"].as(), &agenda)) return 1; if (rank == 0) cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n"; vector lambdas; for (int ai = 0; ai < agenda.size(); ++ai) { const string& cur_config = agenda[ai].first; const unsigned max_iteration = agenda[ai].second; if (rank == 0) cerr << "STARTING TRAINING EPOCH " << (ai+1) << ". CONFIG=" << cur_config << endl; // load cdec.ini and set up decoder ReadFile ini_rf(cur_config); Decoder decoder(ini_rf.stream()); if (rank == 0) o->ResetEpoch(); // resets the learning rate-- TODO is this good? int iter = -1; bool converged = false; while (!converged) { #ifdef HAVE_MPI mpi::timer timer; #endif weights.InitFromVector(x); weights.InitVector(&lambdas); ++iter; ++titer; observer.Reset(); decoder.SetWeights(lambdas); if (rank == 0) { converged = (iter == max_iteration); SanityCheck(lambdas); ShowLargestFeatures(lambdas); string fname = "weights.cur.gz"; if (iter % write_weights_every_ith == 0) { ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz"; fname = o.str(); } if (converged && ((ai+1)==agenda.size())) { fname = "weights.final.gz"; } ostringstream vv; vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (titer * size_per_proc / static_cast(corpus.size())) << " eta=" << lr->eta(titer); const string svv = vv.str(); cerr << svv << endl; weights.WriteToFile(fname, true, &svv); } for (int i = 0; i < size_per_proc; ++i) { int ei = corpus.size() * rng->next(); int id = ids[ei]; decoder.SetId(id); decoder.Decode(corpus[ei], &observer); } SparseVector local_grad, g; observer.GetGradient(&local_grad); #ifdef HAVE_MPI reduce(world, local_grad, g, std::plus >(), 0); #else g.swap(local_grad); #endif local_grad.clear(); for (int i = 0; i < frozen_fids.size(); ++i) g.erase(frozen_fids[i]); if (rank == 0) { g /= (size_per_proc * size); o->UpdateWeights(g, FD::NumFeats(), &x); } #ifdef HAVE_MPI broadcast(world, x, 0); broadcast(world, converged, 0); world.barrier(); if (rank == 0) { cerr << " ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; } #endif } } return 0; }