#include <iostream> #include <cmath> #include <boost/program_options.hpp> #include <boost/program_options/variables_map.hpp> #include "lattice.h" #include "stringlib.h" #include "filelib.h" #include "ttables.h" #include "tdict.h" #include "em_utils.h" namespace po = boost::program_options; using namespace std; bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("iterations,i",po::value<unsigned>()->default_value(5),"Number of iterations of EM training") ("beam_threshold,t",po::value<double>()->default_value(-4),"log_10 of beam threshold (-10000 to include everything, 0 max)") ("no_null_word,N","Do not generate from the null token") ("variational_bayes,v","Add a symmetric Dirichlet prior and infer VB estimate of weights") ("alpha,a", po::value<double>()->default_value(0.01), "Hyperparameter for optional Dirichlet prior") ("no_add_viterbi,V","Do not add Viterbi alignment points (may generate a grammar where some training sentence pairs are unreachable)"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value<string>(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as<string>().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (argc < 2 || conf->count("help")) { cerr << "Usage " << argv[0] << " [OPTIONS] corpus.fr-en\n"; cerr << dcmdline_options << endl; return false; } return true; } int main(int argc, char** argv) { po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; const string fname = argv[argc - 1]; const int ITERATIONS = conf["iterations"].as<unsigned>(); const double BEAM_THRESHOLD = pow(10.0, conf["beam_threshold"].as<double>()); const bool use_null = (conf.count("no_null_word") == 0); const WordID kNULL = TD::Convert("<eps>"); const bool add_viterbi = (conf.count("no_add_viterbi") == 0); const bool variational_bayes = (conf.count("variational_bayes") > 0); const double alpha = conf["alpha"].as<double>(); if (variational_bayes && alpha <= 0.0) { cerr << "--alpha must be > 0\n"; return 1; } TTable tt; TTable::Word2Word2Double was_viterbi; for (int iter = 0; iter < ITERATIONS; ++iter) { const bool final_iteration = (iter == (ITERATIONS - 1)); cerr << "ITERATION " << (iter + 1) << (final_iteration ? " (FINAL)" : "") << endl; ReadFile rf(fname); istream& in = *rf.stream(); double likelihood = 0; double denom = 0.0; int lc = 0; bool flag = false; string line; while(true) { getline(in, line); if (!in) break; ++lc; if (lc % 1000 == 0) { cerr << '.'; flag = true; } if (lc %50000 == 0) { cerr << " [" << lc << "]\n" << flush; flag = false; } string ssrc, strg; ParseTranslatorInput(line, &ssrc, &strg); Lattice src, trg; LatticeTools::ConvertTextToLattice(ssrc, &src); LatticeTools::ConvertTextToLattice(strg, &trg); if (src.size() == 0 || trg.size() == 0) { cerr << "Error: " << lc << "\n" << line << endl; assert(src.size() > 0); assert(trg.size() > 0); } denom += trg.size(); vector<double> probs(src.size() + 1); const double src_logprob = -log(src.size() + 1); for (int j = 0; j < trg.size(); ++j) { const WordID& f_j = trg[j][0].label; double sum = 0; if (use_null) { probs[0] = tt.prob(kNULL, f_j); sum += probs[0]; } for (int i = 1; i <= src.size(); ++i) { probs[i] = tt.prob(src[i-1][0].label, f_j); sum += probs[i]; } if (final_iteration) { if (add_viterbi) { WordID max_i = 0; double max_p = -1; if (use_null) { max_i = kNULL; max_p = probs[0]; } for (int i = 1; i <= src.size(); ++i) { if (probs[i] > max_p) { max_p = probs[i]; max_i = src[i-1][0].label; } } was_viterbi[max_i][f_j] = 1.0; } } else { if (use_null) tt.Increment(kNULL, f_j, probs[0] / sum); for (int i = 1; i <= src.size(); ++i) tt.Increment(src[i-1][0].label, f_j, probs[i] / sum); } likelihood += log(sum) + src_logprob; } } if (flag) { cerr << endl; } cerr << " log likelihood: " << likelihood << endl; cerr << " cross entropy: " << (-likelihood / denom) << endl; cerr << " perplexity: " << pow(2.0, -likelihood / denom) << endl; if (!final_iteration) { if (variational_bayes) tt.NormalizeVB(alpha); else tt.Normalize(); } } for (TTable::Word2Word2Double::iterator ei = tt.ttable.begin(); ei != tt.ttable.end(); ++ei) { const TTable::Word2Double& cpd = ei->second; const TTable::Word2Double& vit = was_viterbi[ei->first]; const string& esym = TD::Convert(ei->first); double max_p = -1; for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi) if (fi->second > max_p) max_p = fi->second; const double threshold = max_p * BEAM_THRESHOLD; for (TTable::Word2Double::const_iterator fi = cpd.begin(); fi != cpd.end(); ++fi) { if (fi->second > threshold || (vit.count(fi->first) > 0)) { cout << esym << ' ' << TD::Convert(fi->first) << ' ' << log(fi->second) << endl; } } } return 0; }