cdec cfg './cdec.ini' Loading the LM will be faster if you build a binary file. Reading ./nc-wmt11.en.srilm.gz ----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100 **************************************************************************************************** Example feature: Shape_S00000_T00000 Seeding random number sequence to 970626287 dtrain Parameters: k 100 N 4 T 2 scorer 'fixed_stupid_bleu' sample from 'kbest' filter 'uniq' learning rate 1 gamma 0 loss margin 0 faster perceptron 1 pairs 'XYX' hi lo 0.1 pair threshold 0 select weights 'VOID' l1 reg 0 'none' max pairs 4294967295 cdec cfg './cdec.ini' input './nc-wmt11.de.gz' refs './nc-wmt11.en.gz' output '-' stop_after 10 (a dot represents 10 inputs) Iteration #1 of 2. . 10 Stopping after 10 input sentences. WEIGHTS Glue = -614 WordPenalty = +1256.8 LanguageModel = +5610.5 LanguageModel_OOV = -1449 PhraseModel_0 = -2107 PhraseModel_1 = -4666.1 PhraseModel_2 = -2713.5 PhraseModel_3 = +4204.3 PhraseModel_4 = -1435.8 PhraseModel_5 = +916 PhraseModel_6 = +190 PassThrough = -2527 --- 1best avg score: 0.17874 (+0.17874) 1best avg model score: 88399 (+88399) avg # pairs: 798.2 (meaningless) avg # rank err: 798.2 avg # margin viol: 0 non0 feature count: 887 avg list sz: 91.3 avg f count: 126.85 (time 0.33 min, 2 s/S) Iteration #2 of 2. . 10 WEIGHTS Glue = -1025 WordPenalty = +1751.5 LanguageModel = +10059 LanguageModel_OOV = -4490 PhraseModel_0 = -2640.7 PhraseModel_1 = -3757.4 PhraseModel_2 = -1133.1 PhraseModel_3 = +1837.3 PhraseModel_4 = -3534.3 PhraseModel_5 = +2308 PhraseModel_6 = +1677 PassThrough = -6222 --- 1best avg score: 0.30764 (+0.12891) 1best avg model score: -2.5042e+05 (-3.3882e+05) avg # pairs: 725.9 (meaningless) avg # rank err: 725.9 avg # margin viol: 0 non0 feature count: 1499 avg list sz: 91.3 avg f count: 114.34 (time 0.32 min, 1.9 s/S) Writing weights file to '-' ... done --- Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764]. This took 0.65 min.