#include #include #include #include #include #include #include #include #include #include #include "config.h" #include "stringlib.h" #include "verbose.h" #include "cllh_observer.h" #include "hg.h" #include "prob.h" #include "inside_outside.h" #include "ff_register.h" #include "decoder.h" #include "filelib.h" #include "online_optimizer.h" #include "fdict.h" #include "weights.h" #include "sparse_vector.h" #include "sampler.h" #ifdef HAVE_MPI #include #include namespace mpi = boost::mpi; #endif using namespace std; namespace po = boost::program_options; bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("weights,w",po::value(), "Initial feature weights") ("training_data,d",po::value(), "Training data corpus") ("test_data,t",po::value(), "(optional) Test data") ("decoder_config,c",po::value(), "Decoder configuration file") ("minibatch_size_per_proc,s", po::value()->default_value(8), "Number of training instances evaluated per processor in each minibatch") ("max_passes", po::value()->default_value(20.0), "Maximum number of passes through the data") ("max_walltime", po::value(), "Walltime to run (in minutes)") ("write_every_n_minibatches", po::value()->default_value(100), "Write weights every N minibatches processed") ("random_seed,S", po::value(), "Random seed") ("regularization,r", po::value()->default_value("none"), "Regularization 'none', 'l1', or 'l2'") ("regularization_strength,C", po::value(), "Regularization strength") ("eta,e", po::value()->default_value(1.0), "Initial learning rate (eta)"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) { cerr << dcmdline_options << endl; return false; } return true; } void ReadTrainingCorpus(const string& fname, int rank, int size, vector* c, vector* order) { ReadFile rf(fname); istream& in = *rf.stream(); string line; int id = 0; while(getline(in, line)) { if (id % size == rank) { c->push_back(line); order->push_back(id); } ++id; } } static const double kMINUS_EPSILON = -1e-6; struct TrainingObserver : public DecoderObserver { void Reset() { acc_grad.clear(); acc_obj = 0; total_complete = 0; } virtual void NotifyDecodingStart(const SentenceMetadata&) { cur_model_exp.clear(); cur_obj = 0; state = 1; } // compute model expectations, denominator of objective virtual void NotifyTranslationForest(const SentenceMetadata&, Hypergraph* hg) { assert(state == 1); state = 2; const prob_t z = InsideOutside, EdgeFeaturesAndProbWeightFunction>(*hg, &cur_model_exp); cur_obj = log(z); cur_model_exp /= z; } // compute "empirical" expectations, numerator of objective virtual void NotifyAlignmentForest(const SentenceMetadata&, Hypergraph* hg) { assert(state == 2); state = 3; SparseVector ref_exp; const prob_t ref_z = InsideOutside, EdgeFeaturesAndProbWeightFunction>(*hg, &ref_exp); ref_exp /= ref_z; double log_ref_z; #if 0 if (crf_uniform_empirical) { log_ref_z = ref_exp.dot(feature_weights); } else { log_ref_z = log(ref_z); } #else log_ref_z = log(ref_z); #endif // rounding errors means that <0 is too strict if ((cur_obj - log_ref_z) < kMINUS_EPSILON) { cerr << "DIFF. ERR! log_model_z < log_ref_z: " << cur_obj << " " << log_ref_z << endl; exit(1); } assert(!std::isnan(log_ref_z)); ref_exp -= cur_model_exp; acc_grad += ref_exp; acc_obj += (cur_obj - log_ref_z); } virtual void NotifyDecodingComplete(const SentenceMetadata&) { if (state == 3) { ++total_complete; } else { } } void GetGradient(SparseVector* g) const { g->clear(); #if HAVE_CXX11 for (auto& gi : acc_grad) { #else for (FastSparseVector::const_iterator it = acc_grad.begin(); it != acc_grad.end(); ++it) { pair& gi = *it; #endif g->set_value(gi.first, -gi.second.as_float()); } } int total_complete; SparseVector cur_model_exp; SparseVector acc_grad; double acc_obj; double cur_obj; int state; }; #ifdef HAVE_MPI namespace boost { namespace mpi { template<> struct is_commutative >, SparseVector > : mpl::true_ { }; } } // end namespace boost::mpi #endif class AdaGradOptimizer { public: explicit AdaGradOptimizer(double e) : eta(e), G() {} void update(const SparseVector& g, vector* x, SparseVector* sx) { if (x->size() > G.size()) G.resize(x->size(), 0.0); #if HAVE_CXX11 for (auto& gi : g) { #else for (SparseVector::const_iterator it = g.begin(); it != g.end(); ++it) { const pair& gi = *it; #endif if (gi.second) { G[gi.first] += gi.second * gi.second; (*x)[gi.first] -= eta / sqrt(G[gi.first]) * gi.second; sx->add_value(gi.first, -eta / sqrt(G[gi.first]) * gi.second); } } } const double eta; vector G; }; class AdaGradL1Optimizer { public: explicit AdaGradL1Optimizer(double e, double l) : t(), eta(e), lambda(l), G() {} void update(const SparseVector& g, vector* x, SparseVector* sx) { t += 1.0; if (x->size() > G.size()) { G.resize(x->size(), 0.0); u.resize(x->size(), 0.0); } #if HAVE_CXX11 for (auto& gi : g) { #else for (SparseVector::const_iterator it = g.begin(); it != g.end(); ++it) { const pair& gi = *it; #endif if (gi.second) { u[gi.first] += gi.second; G[gi.first] += gi.second * gi.second; sx->set_value(gi.first, 1.0); // this is a dummy value to trigger recomputation } } // compute updates (avoid invalidating iterators by putting them all // in the vector vupdate and applying them after this) vector> vupdate; #if HAVE_CXX11 for (auto& xi : *sx) { #else for (SparseVector::const_iterator it = sx->begin(); it != sx->end(); ++it) { const pair& gi = *it; #endif double z = fabs(u[xi.first] / t) - lambda; double s = 1; if (u[xi.first] > 0) s = -1; if (z > 0 && G[xi.first]) { vupdate.push_back(make_pair(xi.first, eta * s * z * t / sqrt(G[xi.first]))); } else { vupdate.push_back(make_pair(xi.first, 0.0)); } } // apply updates for (unsigned i = 0; i < vupdate.size(); ++i) { if (vupdate[i].second) { sx->set_value(vupdate[i].first, vupdate[i].second); (*x)[vupdate[i].first] = vupdate[i].second; } else { (*x)[vupdate[i].first] = 0.0; sx->erase(vupdate[i].first); } } } double t; const double eta; const double lambda; vector G, u; }; unsigned non_zeros(const vector& x) { unsigned nz = 0; for (unsigned i = 0; i < x.size(); ++i) if (x[i]) ++nz; return nz; } int main(int argc, char** argv) { #ifdef HAVE_MPI mpi::environment env(argc, argv); mpi::communicator world; const int size = world.size(); const int rank = world.rank(); #else const int size = 1; const int rank = 0; #endif if (size > 1) SetSilent(true); // turn off verbose decoder output register_feature_functions(); po::variables_map conf; if (!InitCommandLine(argc, argv, &conf)) return 1; ReadFile ini_rf(conf["decoder_config"].as()); Decoder decoder(ini_rf.stream()); // load initial weights vector init_weights; if (conf.count("input_weights")) Weights::InitFromFile(conf["input_weights"].as(), &init_weights); vector corpus, test_corpus; vector ids; ReadTrainingCorpus(conf["training_data"].as(), rank, size, &corpus, &ids); assert(corpus.size() > 0); if (conf.count("test_data")) ReadTrainingCorpus(conf["test_data"].as(), rank, size, &corpus, &ids); const unsigned size_per_proc = conf["minibatch_size_per_proc"].as(); if (size_per_proc > corpus.size()) { cerr << "Minibatch size must be smaller than corpus size!\n"; return 1; } const double minibatch_size = size_per_proc * size; size_t total_corpus_size = 0; #ifdef HAVE_MPI reduce(world, corpus.size(), total_corpus_size, std::plus(), 0); #else total_corpus_size = corpus.size(); #endif if (rank == 0) cerr << "Total corpus size: " << total_corpus_size << endl; boost::shared_ptr rng; if (conf.count("random_seed")) rng.reset(new MT19937(conf["random_seed"].as())); else rng.reset(new MT19937); double passes_per_minibatch = static_cast(size_per_proc) / total_corpus_size; int write_weights_every_ith = conf["write_every_n_minibatches"].as(); unsigned max_iteration = conf["max_passes"].as() / passes_per_minibatch; ++max_iteration; if (rank == 0) cerr << "Max passes through data = " << conf["max_passes"].as() << endl << " --> max minibatches = " << max_iteration << endl; unsigned timeout = 0; if (conf.count("max_walltime")) timeout = 60 * conf["max_walltime"].as(); vector& lambdas = decoder.CurrentWeightVector(); if (init_weights.size()) { lambdas.swap(init_weights); init_weights.clear(); } SparseVector lambdas_sparse; Weights::InitSparseVector(lambdas, &lambdas_sparse); //AdaGradOptimizer adagrad(conf["eta"].as()); AdaGradL1Optimizer adagrad(conf["eta"].as(), conf["regularization_strength"].as()); int iter = -1; bool converged = false; TrainingObserver observer; ConditionalLikelihoodObserver cllh_observer; const time_t start_time = time(NULL); while (!converged) { #ifdef HAVE_MPI mpi::timer timer; #endif ++iter; if (iter > 1) { lambdas_sparse.init_vector(&lambdas); if (rank == 0) { Weights::SanityCheck(lambdas); Weights::ShowLargestFeatures(lambdas); } } observer.Reset(); if (rank == 0) { converged = (iter == max_iteration); string fname = "weights.cur.gz"; if (iter % write_weights_every_ith == 0) { ostringstream o; o << "weights." << iter << ".gz"; fname = o.str(); } const time_t cur_time = time(NULL); if (timeout && ((cur_time - start_time) > timeout)) { converged = true; fname = "weights.final.gz"; } ostringstream vv; double minutes = (cur_time - start_time) / 60.0; vv << "total walltime=" << minutes << "min iter=" << iter << " minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << non_zeros(lambdas) << '/' << FD::NumFeats() << " passes_thru_data=" << (iter * size_per_proc / static_cast(corpus.size())); const string svv = vv.str(); cerr << svv << endl; Weights::WriteToFile(fname, lambdas, true, &svv); } for (int i = 0; i < size_per_proc; ++i) { int ei = corpus.size() * rng->next(); int id = ids[ei]; decoder.SetId(id); decoder.Decode(corpus[ei], &observer); } SparseVector local_grad, g; observer.GetGradient(&local_grad); #ifdef HAVE_MPI reduce(world, local_grad, g, std::plus >(), 0); #else g.swap(local_grad); #endif local_grad.clear(); if (rank == 0) { g /= minibatch_size; lambdas.resize(FD::NumFeats(), 0.0); // might have seen new features adagrad.update(g, &lambdas, &lambdas_sparse); } #ifdef HAVE_MPI broadcast(world, lambdas_sparse, 0); broadcast(world, converged, 0); world.barrier(); if (rank == 0) { cerr << " ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; } #endif } cerr << "CONVERGED = " << converged << endl; cerr << "EXITING...\n"; return 0; }