#include "ff_lm.h" #include #include #include #include #include #include #include "tdict.h" #include "Vocab.h" #include "Ngram.h" #include "hg.h" #include "stringlib.h" using namespace std; struct LMClient { struct Cache { map tree; float prob; Cache() : prob() {} }; LMClient(const char* host) : port(6666) { s = strchr(host, ':'); if (s != NULL) { *s = '\0'; ++s; port = atoi(s); } sock = socket(AF_INET, SOCK_STREAM, 0); hp = gethostbyname(host); if (hp == NULL) { cerr << "unknown host " << host << endl; abort(); } bzero((char *)&server, sizeof(server)); bcopy(hp->h_addr, (char *)&server.sin_addr, hp->h_length); server.sin_family = hp->h_addrtype; server.sin_port = htons(port); int errors = 0; while (connect(sock, (struct sockaddr *)&server, sizeof(server)) < 0) { cerr << "Error: connect()\n"; sleep(1); errors++; if (errors > 3) exit(1); } cerr << "Connected to LM on " << host << " on port " << port << endl; } float wordProb(int word, int* context) { Cache* cur = &cache; int i = 0; while (context[i] > 0) { cur = &cur->tree[context[i++]]; } cur = &cur->tree[word]; if (cur->prob) { return cur->prob; } i = 0; ostringstream os; os << "prob " << TD::Convert(word); while (context[i] > 0) { os << ' ' << TD::Convert(context[i++]); } os << endl; string out = os.str(); write(sock, out.c_str(), out.size()); int r = read(sock, res, 6); int errors = 0; int cnt = 0; while (1) { if (r < 0) { errors++; sleep(1); cerr << "Error: read()\n"; if (errors > 5) exit(1); } else if (r==0 || res[cnt] == '\n') { break; } else { cnt += r; if (cnt==6) break; read(sock, &res[cnt], 6-cnt); } } cur->prob = *reinterpret_cast(res); return cur->prob; } void clear() { cache.tree.clear(); } private: Cache cache; int sock, port; char *s; struct hostent *hp; struct sockaddr_in server; char res[8]; }; class LanguageModelImpl { public: LanguageModelImpl(int order, const string& f) : ngram_(*TD::dict_), buffer_(), order_(order), state_size_(OrderToStateSize(order) - 1), floor_(-100.0), client_(NULL), kSTART(TD::Convert("")), kSTOP(TD::Convert("")), kUNKNOWN(TD::Convert("")), kNONE(-1), kSTAR(TD::Convert("<{STAR}>")) { if (f.find("lm://") == 0) { client_ = new LMClient(f.substr(5).c_str()); } else { File file(f.c_str(), "r", 0); assert(file); cerr << "Reading " << order_ << "-gram LM from " << f << endl; ngram_.read(file, false); } } ~LanguageModelImpl() { delete client_; } inline int StateSize(const void* state) const { return *(static_cast(state) + state_size_); } inline void SetStateSize(int size, void* state) const { *(static_cast(state) + state_size_) = size; } inline double LookupProbForBufferContents(int i) { double p = client_ ? client_->wordProb(buffer_[i], &buffer_[i+1]) : ngram_.wordProb(buffer_[i], (VocabIndex*)&buffer_[i+1]); if (p < floor_) p = floor_; return p; } string DebugStateToString(const void* state) const { int len = StateSize(state); const int* astate = reinterpret_cast(state); string res = "["; for (int i = 0; i < len; ++i) { res += " "; res += TD::Convert(astate[i]); } res += " ]"; return res; } inline double ProbNoRemnant(int i, int len) { int edge = len; bool flag = true; double sum = 0.0; while (i >= 0) { if (buffer_[i] == kSTAR) { edge = i; flag = false; } else if (buffer_[i] <= 0) { edge = i; flag = true; } else { if ((edge-i >= order_) || (flag && !(i == (len-1) && buffer_[i] == kSTART))) sum += LookupProbForBufferContents(i); } --i; } return sum; } double EstimateProb(const vector& phrase) { int len = phrase.size(); buffer_.resize(len + 1); buffer_[len] = kNONE; int i = len - 1; for (int j = 0; j < len; ++j,--i) buffer_[i] = phrase[j]; return ProbNoRemnant(len - 1, len); } double EstimateProb(const void* state) { int len = StateSize(state); // cerr << "residual len: " << len << endl; buffer_.resize(len + 1); buffer_[len] = kNONE; const int* astate = reinterpret_cast(state); int i = len - 1; for (int j = 0; j < len; ++j,--i) buffer_[i] = astate[j]; return ProbNoRemnant(len - 1, len); } double FinalTraversalCost(const void* state) { int slen = StateSize(state); int len = slen + 2; // cerr << "residual len: " << len << endl; buffer_.resize(len + 1); buffer_[len] = kNONE; buffer_[len-1] = kSTART; const int* astate = reinterpret_cast(state); int i = len - 2; for (int j = 0; j < slen; ++j,--i) buffer_[i] = astate[j]; buffer_[i] = kSTOP; assert(i == 0); return ProbNoRemnant(len - 1, len); } double LookupWords(const TRule& rule, const vector& ant_states, void* vstate) { int len = rule.ELength() - rule.Arity(); for (int i = 0; i < ant_states.size(); ++i) len += StateSize(ant_states[i]); buffer_.resize(len + 1); buffer_[len] = kNONE; int i = len - 1; const vector& e = rule.e(); for (int j = 0; j < e.size(); ++j) { if (e[j] < 1) { const int* astate = reinterpret_cast(ant_states[-e[j]]); int slen = StateSize(astate); for (int k = 0; k < slen; ++k) buffer_[i--] = astate[k]; } else { buffer_[i--] = e[j]; } } double sum = 0.0; int* remnant = reinterpret_cast(vstate); int j = 0; i = len - 1; int edge = len; while (i >= 0) { if (buffer_[i] == kSTAR) { edge = i; } else if (edge-i >= order_) { sum += LookupProbForBufferContents(i); } else if (edge == len && remnant) { remnant[j++] = buffer_[i]; } --i; } if (!remnant) return sum; if (edge != len || len >= order_) { remnant[j++] = kSTAR; if (order_-1 < edge) edge = order_-1; for (int i = edge-1; i >= 0; --i) remnant[j++] = buffer_[i]; } SetStateSize(j, vstate); return sum; } static int OrderToStateSize(int order) { return ((order-1) * 2 + 1) * sizeof(WordID) + 1; } private: Ngram ngram_; vector buffer_; const int order_; const int state_size_; const double floor_; LMClient* client_; public: const WordID kSTART; const WordID kSTOP; const WordID kUNKNOWN; const WordID kNONE; const WordID kSTAR; }; LanguageModel::LanguageModel(const string& param) : fid_(FD::Convert("LanguageModel")) { vector argv; int argc = SplitOnWhitespace(param, &argv); int order = 3; // TODO add support for -n FeatureName string filename; if (argc < 1) { cerr << "LanguageModel requires a filename, minimally!\n"; abort(); } else if (argc == 1) { filename = argv[0]; } else if (argc == 2 || argc > 3) { cerr << "Don't understand 'LanguageModel " << param << "'\n"; } else if (argc == 3) { if (argv[0] == "-o") { order = atoi(argv[1].c_str()); filename = argv[2]; } else if (argv[1] == "-o") { order = atoi(argv[2].c_str()); filename = argv[0]; } } SetStateSize(LanguageModelImpl::OrderToStateSize(order)); pimpl_ = new LanguageModelImpl(order, filename); } LanguageModel::~LanguageModel() { delete pimpl_; } string LanguageModel::DebugStateToString(const void* state) const{ return pimpl_->DebugStateToString(state); } void LanguageModel::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector& ant_states, SparseVector* features, SparseVector* estimated_features, void* state) const { (void) smeta; features->set_value(fid_, pimpl_->LookupWords(*edge.rule_, ant_states, state)); estimated_features->set_value(fid_, pimpl_->EstimateProb(state)); } void LanguageModel::FinalTraversalFeatures(const void* ant_state, SparseVector* features) const { features->set_value(fid_, pimpl_->FinalTraversalCost(ant_state)); }