#include "arc_factored.h" #include #include #include #include #include "timing_stats.h" #include "arc_ff.h" #include "arc_ff_factory.h" #include "dep_training.h" #include "stringlib.h" #include "filelib.h" #include "tdict.h" #include "weights.h" #include "rst.h" using namespace std; namespace po = boost::program_options; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); string cfg_file; opts.add_options() ("training_data,t",po::value()->default_value("-"), "File containing training data (jsent format)") ("feature_function,F",po::value >()->composing(), "feature function (multiple permitted)") ("q_weights,q",po::value(), "Arc-factored weights for proposal distribution") ("samples,n",po::value()->default_value(1000), "Number of samples"); po::options_description clo("Command line options"); clo.add_options() ("config,c", po::value(&cfg_file), "Configuration file") ("help,?", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(dconfig_options).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (cfg_file.size() > 0) { ReadFile rf(cfg_file); po::store(po::parse_config_file(*rf.stream(), dconfig_options), *conf); } if (conf->count("help")) { cerr << dcmdline_options << endl; exit(1); } } int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); ArcFactoredForest af(5); ArcFFRegistry reg; reg.Register("DistancePenalty", new ArcFFFactory); vector corpus; vector > ffs; ffs.push_back(boost::shared_ptr(new DistancePenalty(""))); TrainingInstance::ReadTraining(conf["training_data"].as(), &corpus); vector forests(corpus.size()); SparseVector empirical; bool flag = false; for (int i = 0; i < corpus.size(); ++i) { TrainingInstance& cur = corpus[i]; if ((i+1) % 10 == 0) { cerr << '.' << flush; flag = true; } if ((i+1) % 400 == 0) { cerr << " [" << (i+1) << "]\n"; flag = false; } for (int fi = 0; fi < ffs.size(); ++fi) { ArcFeatureFunction& ff = *ffs[fi]; ff.PrepareForInput(cur.ts); SparseVector efmap; for (int j = 0; j < cur.tree.h_m_pairs.size(); ++j) { efmap.clear(); ff.EgdeFeatures(cur.ts, cur.tree.h_m_pairs[j].first, cur.tree.h_m_pairs[j].second, &efmap); cur.features += efmap; } for (int j = 0; j < cur.tree.roots.size(); ++j) { efmap.clear(); ff.EgdeFeatures(cur.ts, -1, cur.tree.roots[j], &efmap); cur.features += efmap; } } empirical += cur.features; forests[i].resize(cur.ts.words.size()); forests[i].ExtractFeatures(cur.ts, ffs); } if (flag) cerr << endl; vector weights(FD::NumFeats(), 0.0); Weights::InitFromFile(conf["q_weights"].as(), &weights); MT19937 rng; SparseVector model_exp; SparseVector sampled_exp; int samples = conf["samples"].as(); for (int i = 0; i < corpus.size(); ++i) { const int num_words = corpus[i].ts.words.size(); forests[i].Reweight(weights); forests[i].EdgeMarginals(); model_exp.clear(); for (int h = -1; h < num_words; ++h) { for (int m = 0; m < num_words; ++m) { if (h == m) continue; const ArcFactoredForest::Edge& edge = forests[i](h,m); const SparseVector& fmap = edge.features; double prob = edge.edge_prob.as_float(); model_exp += fmap * prob; } } //cerr << "TRUE EXP: " << model_exp << endl; forests[i].Reweight(weights); TreeSampler ts(forests[i]); sampled_exp.clear(); //ostringstream os; os << "Samples_" << samples; //Timer t(os.str()); for (int n = 0; n < samples; ++n) { EdgeSubset tree; ts.SampleRandomSpanningTree(&tree, &rng); SparseVector feats; tree.ExtractFeatures(corpus[i].ts, ffs, &feats); sampled_exp += feats; } sampled_exp /= samples; cerr << "L2 norm of diff @ " << samples << " samples: " << (model_exp - sampled_exp).l2norm() << endl; } return 0; }