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Better line search directions for MERT

• MERT picks optimal corpus-BLEU weights 
given an origin and a search direction (when 
decoding with pruning, this is approximate; 
redecode and merge forests or kbest lists until 
converged)

• When you have many features, there are 
many directions.  Usually: orthogonal (vary 
only one feature) and a handful of random.

• Idea: pick better search directions



A better line search direction

• Use per-sentence BLEU (anti-)oracle+model score 
1best (like MIRA hope+fear).

• Both model->hope and fear->hope directions 
seem reasonable (the direction is just the 
difference in the 1-best feature vectors)

• We can include as many directions as we want, so 
try both.

• It takes time to compute (anti-)oracles, so we 
randomly select batches of sentences and 
average the feature differences in each batch to 
generate a direction.



Objections?

• Why are we performing an expensive exact 
infinite-line search using a heuristic (local 
gradient inspired) direction?

• MERT has no smoothing.  If you try to 
regularize the objective, then you lose the 
exact line search behavior.

• We need to still include random or orthogonal 
directions in case sparse features aren’t (yet) 
represented in model/hope/fear.



Does it work?

(tuning) oracle BLEU weight 0 (baseline) 0.1 1 10 100

test BLEU 22.01 22.13 22.06 21.85 22.08

Tuning a urdu Hiero system with 10 dense features, there was no improvement.
Convergence also wasn’t any faster.

Orthogonal directions and random directions are used in all cases.

Since the preference for high model score vs. good or bad BLEU score is scale-dependent, 
I tried a wide range of weights.

Still possibly worth trying: more, sparser features.  Different direction-averaging oracle 
batch sizes.  More batches. 

Possible confound: I didn’t implement the hope/fear decoding myself; however, it’s been 
verified to at least partially work: it yields kbests with better (hope) or worse (fear) BLEU.

No.



Faster LM rescoring of TM forests
We don’t need the whole TM forest to get the best translation using the ngram LM:



Is it faster?
Barely (if you want a good translation):



Soft pruning

• We lose too much good stuff by using an inside-outside global 
beam that removes large portions of the LM-unscored forest

• Coarse-to-fine using lower order ngrams or fewer bits per word 
(parts of speech or other classes) may work (but not as well as 
Petrov claimed)

• Idea: explore nodes that have poor without-LM model scores but 
only a little while cube pruning LM rescoring, varying the number of 
descendants explored smoothly (soft pruning, rather than 0% or 
100% only).

• Baseline: N[i] = 200 if v[i]>threshold (per-word), 0 otherwise. 
• Promise: N[i] ~ v[i]^β (normalized so average N[i]=200 or whatever)
• (N[i] is the number of cube pruning LM descendants explored for 

item i)
• (v[i] is the viterbi probability for item i: e^(λ•f) where f is the 

feature vector of the best derivation using i.)



Does it work?

• No.

β 0 (baseline) 0.01 0.1 10

BLEU 20.21 20.16 20.11 19.7

Ngram
rescoring 
time (avg)

1.8s 1.9s 2.0s 1.1s

(Hiero Urdu 3gram)
Will it help with smaller baseline N[i] than 200?
Will it help with syntactic categories with/without per-span limits?



Thank you.



Appendix: FSA target string models

struct SameFirstLetter : public FsaFeatureFunctionBase<SameFirstLetter> {

SameFirstLetter(std::string const& param) : 
FsaFeatureFunctionBase<SameFirstLetter>(1,singleton_sentence("END"))

// 1 byte of state, scan final (single) symbol "END" to get final state cost

{

start[0]='a'; h_start[0]=0; Init();

}

int markov_order() const { return 1; }

Featval Scan1(WordID w, void const* old_state, void *new_state) const {

char cw=TD::Convert(w)[0];

char co=*(char const*)old_state;

*(char *)new_state = cw;

return cw==co?1:0;

}

void print_state(std::ostream &o, void const* st) const {

o<<*(char const*)st;

}

static std::string usage(bool param,bool verbose) {

return FeatureFunction::usage_helper("SameFirstLetter",

"[no args]",

"1 each time 2 consecutive words start with the same letter",

param,verbose);

}

};

global_ff_registry->Register(new FFFactory<FeatureFunctionFromFsa<SameFirstLetter> >);

// creates the usual bottom-up forest rescoring state with unscored left words, right state 
from scored words.



(typed fixed length state, e.g. int)

struct ShorterThanPrev : FsaTypedBase<int,ShorterThanPrev> {

ShorterThanPrev(std::string const& param)

: FsaTypedBase<int,ShorterThanPrev>(-1,4,singleton_sentence(TD::se)) // 
start, h_start, end_phrase

// h_start estimate state: anything <4 chars is usually shorter than previous

{ Init(); }

static std::string usage(bool param,bool verbose) {

return FeatureFunction::usage_helper(

"ShorterThanPrev",

"",

"stupid example stateful (bigram) feature: 1 per target word that's shorter 
than the previous word (end of sentence considered '</s>')",

param,verbose);

}

static inline int wordlen(WordID w) {

return std::strlen(TD::Convert(w));

}

Featval ScanT1(SentenceMetadata const& /* smeta */,const Hypergraph::Edge& /* 
edge */,WordID w,int prevlen,int &len) const {

len=wordlen(w);

return (len<prevlen) ? 1 : 0;

}

};



Ngram language model

template <class Accum>

void ScanAccum(SentenceMetadata const& /* smeta */,Hypergraph::Edge const& e

,WordID w, void const* old_st, void *new_st, Accum *a) const 

{

if (!ctxlen_) {

Add(floored(pimpl_->WordProb(w,&empty_context)),a);

} else {

WordID ctx[ngram_order_];

state_copy(ctx,old_st);

ctx[ctxlen_]=TD::none;

Featval p=floored(pimpl_->WordProb(w,ctx));      

FSALMDBG(e,"p("<<TD::Convert(w)<<"|"<<TD::Convert(ctx,ctx+ctxlen_)<<")="<<p);FSALMDBGnl(e);

// states are srilm contexts so are in reverse order (most recent word is first, then 1-
back comes next, etc.).

WordID *nst=(WordID *)new_st;

nst[0]=w; // new most recent word

to_state(nst+1,ctx,ctxlen_-1); // rotate old words right

#if LM_FSA_SHORTEN_CONTEXT

p+=pimpl_->ShortenContext(nst,ctxlen_);

#endif

Add(p,a);

}

}

Accum is a template so you can equally support feature vectors as a single 
features. You can implement: scan a whole sequence of words at once, possibly 
exceeding declared markov order (using higher order ngram scores along the way).


