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Better line search directions for MERT

• MERT picks optimal corpus-BLEU weights 
given an origin and a search direction (when 
decoding with pruning, this is approximate; 
redecode and merge forests or kbest lists until 
converged)

• When you have many features, there are 
many directions.  Usually: orthogonal (vary 
only one feature) and a handful of random.

• Idea: pick better search directions



A better line search direction

• Use per-sentence BLEU (anti-)oracle+model score 
1best (like MIRA hope+fear).

• Both model->hope and fear->hope directions 
seem reasonable (the direction is just the 
difference in the 1-best feature vectors)

• We can include as many directions as we want, so 
try both.

• It takes time to compute (anti-)oracles, so we 
randomly select batches of sentences and 
average the feature differences in each batch to 
generate a direction.



Objections?

• Why are we performing an expensive exact 
infinite-line search using a heuristic (local 
gradient inspired) direction?

• MERT has no smoothing.  If you try to 
regularize the objective, then you lose the 
exact line search behavior.

• We need to still include random or orthogonal 
directions in case sparse features aren’t (yet) 
represented in model/hope/fear.



Does it work?

(tuning) oracle BLEU weight 0 (baseline) 0.1 1 10 100

test BLEU 22.01 22.13 22.06 21.85 22.08

Tuning a urdu Hiero system with 10 dense features, there was no improvement.
Convergence also wasn’t any faster.

Orthogonal directions and random directions are used in all cases.

Since the preference for high model score vs. good or bad BLEU score is scale-dependent, 
I tried a wide range of weights.

Still possibly worth trying: more, sparser features.  Different direction-averaging oracle 
batch sizes.  More batches. 

Possible confound: I didn’t implement the hope/fear decoding myself; however, it’s been 
verified to at least partially work: it yields kbests with better (hope) or worse (fear) BLEU.

No.



Faster LM rescoring of TM forests
We don’t need the whole TM forest to get the best translation using the ngram LM:



Is it faster?
Barely (if you want a good translation):



Soft pruning

• We lose too much good stuff by using an inside-outside global 
beam that removes large portions of the LM-unscored forest

• Coarse-to-fine using lower order ngrams or fewer bits per word 
(parts of speech or other classes) may work (but not as well as 
Petrov claimed)

• Idea: explore nodes that have poor without-LM model scores but 
only a little while cube pruning LM rescoring, varying the number of 
descendants explored smoothly (soft pruning, rather than 0% or 
100% only).

• Baseline: N[i] = 200 if v[i]>threshold (per-word), 0 otherwise. 
• Promise: N[i] ~ v[i]^β (normalized so average N[i]=200 or whatever)
• (N[i] is the number of cube pruning LM descendants explored for 

item i)
• (v[i] is the viterbi probability for item i: e^(λ•f) where f is the 

feature vector of the best derivation using i.)



Does it work?

• No.

β 0 (baseline) 0.01 0.1 10

BLEU 20.21 20.16 20.11 19.7

Ngram
rescoring 
time (avg)

1.8s 1.9s 2.0s 1.1s

(Hiero Urdu 3gram)
Will it help with smaller baseline N[i] than 200?
Will it help with syntactic categories with/without per-span limits?



Thank you.


