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Outline

GGJ061 introduced an approximation for use in
hierarchical Dirichlet process (HDP) inference:
It’s wrong, don’t use it.

We correct that approximation for DP models.
However, this doesn’t extend to HDPs.

But that’s ok because we’ll describe an efficient
exact implementation.
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word segmentation. ACL/COLING-06
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The Chinese Restaurant Process

In a Dirichlet Process unigram language model words w1 . . .wn are
generated as follows:

G|α0,P0 ∼ DP(α0,P0)

wi |G ∼ G

G is a distribution over an infinite set of words,
P0 is the probability that an word will be in the support of G,
α0 determines the variance of G.

One way of understanding the predictions made by the DP model is
through the Chinese restaurant process (CRP) . . .
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The Chinese Restaurant Process

the
n0=0
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Customers (words) enter a restaurant and choose a table according to
the distribution:

P(zi = k |wi = w , z−i) =


n

z−i
k

nw+α0P0(w) ,0 ≤ k < |k |

α0P0(w)
nw+α0P0(w) , k = |k |
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The Chinese Restaurant Process
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The Chinese Restaurant Process
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Customers (words) enter a restaurant and choose a table according to
the distribution:
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The Chinese Restaurant Process
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Customers (words) enter a restaurant and choose a table according to
the distribution:

P(zi = k |wi = w , z−i) =
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The Chinese Restaurant Process
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Customers (words) enter a restaurant and choose a table according to
the distribution:

P(zi = k |wi = w , z−i) =
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The Chinese Restaurant Process
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The 7th customer ‘the’ enters the restaurant and choses a table from
those already seating ‘the’, or opening a new table:

P(z6 = 0|w6 = the, z−6) =
2

3 + α0P0(the)
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The Chinese Restaurant Process
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The 7th customer ‘the’ enters the restaurant and choses a table from
those already seating ‘the’, or opening a new table:

P(z6 = 4|w6 = the, z−6) =
P0(the)

3 + α0P0(the)
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Approximating the table counts

the
E[tthe]=?

cats
E[tcats]=?

meow
E[tmeow]=?

GGJ06 sought to avoid explicitly tracking tables by reasoning
under the expected table counts (E [tw ]).
Antoniak(1974) derives the expected table count as equal to the
recurrence:

E [tw ] = α0P0(w)
nw∑
i=1

1
α0P0(w) + i − 1

Antoniak also suggests an approximation to this expectation which
GGJ06 presents as:

E [tw ] ≈ α0 log
nw + α0

α0
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Antoniak also suggests an approximation to this expectation which
GGJ06 presents as: (corrected)

E [tw ] ≈ α0P0(w) log
nw + α0P0(w)

α0P0(w)

Blunsom et al. (Uni. of Edinburgh) A Note on the Implemention of HDPs August 4, 2009 5 / 1



university-logo

A better table count approximation

Antoniak’s approximation makes two assumptions:
I α0 is large, not the predominant situation in recent applications

which employ a DP as a sparse prior,

I P0(w) is constant, which is not applicable to HDPs.

In our paper we derive an improved approximation based on a
difference of digamma (ψ) functions:

E [tw ] = α0P0(w) ·

[
ψ
(
α0P0(w) + nw

)
− ψ

(
α0P0(w)

)]

However the restriction on P0(w) being constant remains . . .
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DP performance
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DP performance
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HDP performance
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Histogram Method

At this point we don’t have a useful approximation of the expected
table counts in a HDP model.

However, we can describe a more compact representation for the
state of the restaurant that doesn’t require explicit table tracking.

Instead we maintain a histogram for each dish wi of the frequency
of a table having a particular number of customers.
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Histogram Method
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Histogram Method
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Histogram Method
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Histogram Method
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Histogram Method
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Histogram Method
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Summary

The table count approximation of Goldwater et al.
2006 is broken, don’t use it!
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Thank you.
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