A Note on the Implementation of Hierarchical Dirichlet Processes

Phil Blunsom[∗] , Trevor Cohn[∗] , Sharon Goldwater[∗] and Mark Johnson†

[∗]School of Informatics, University of Edinburgh †Department of Cognitive and Linguistic Sciences, Brown University

August 4, 2009

- GGJ06¹ introduced an approximation for use in hierarchical Dirichlet process (HDP) inference: **It's wrong, don't use it.**
- We correct that approximation for DP models.
- But that's ok because we'll describe an efficient exact implementation.

¹S. Goldwater, T. Griffiths, M. Johnson. Contextual dependencies in unsupervised word segmentation. ACL/COLING-06 ヨメ イヨメ Ω

- GGJ06¹ introduced an approximation for use in hierarchical Dirichlet process (HDP) inference: **It's wrong, don't use it.**
- We correct that approximation for DP models.
- But that's ok because we'll describe an efficient exact implementation.

¹S. Goldwater, T. Griffiths, M. Johnson. Contextual dependencies in unsupervised word segmentation. ACL/COLING-06 Ω

- GGJ06¹ introduced an approximation for use in hierarchical Dirichlet process (HDP) inference: **It's wrong, don't use it.**
- We correct that approximation for DP models. **However, this doesn't extend to HDPs.**
- But that's ok because we'll describe an efficient exact implementation.

¹S. Goldwater, T. Griffiths, M. Johnson. Contextual dependencies in unsupervised word segmentation. ACL/COLING-06 Ω

- GGJ06¹ introduced an approximation for use in hierarchical Dirichlet process (HDP) inference: **It's wrong, don't use it.**
- We correct that approximation for DP models. **However, this doesn't extend to HDPs.**
- But that's ok because we'll describe an efficient exact implementation.

¹S. Goldwater, T. Griffiths, M. Johnson. Contextual dependencies in unsupervised word segmentation. ACL/COLING-06 Ω

- GGJ06¹ introduced an approximation for use in hierarchical Dirichlet process (HDP) inference: **It's wrong, don't use it.**
- We correct that approximation for DP models. **However, this doesn't extend to HDPs.**
- But that's ok because we'll describe an efficient exact implementation.

¹S. Goldwater, T. Griffiths, M. Johnson. Contextual dependencies in unsupervised word segmentation. ACL/COLING-06 Ω

In a Dirichlet Process unigram language model words *w*¹ . . . *wⁿ* are generated as follows:

> $G|\alpha_0, P_0$ ∼ DP(α_0, P_0) $w_i|G$ |*G* ∼ *G*

- *G* is a distribution over an infinite set of words,
- \bullet P_0 is the probability that an word will be in the support of *G*,
- \bullet α_0 determines the variance of *G*.

One way of understanding the predictions made by the DP model is through the Chinese restaurant process (CRP) . . .

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m}$

Customers (words) enter a restaurant and choose a table according to the distribution:

$$
P(z_i = k | w_i = w, \mathbf{z}_{-i}) = \begin{cases} \frac{n_k^{2-i}}{n_w + \alpha_0 P_0(w)}, 0 \le k < |k| \\ \frac{\alpha_0 P_0(w)}{n_w + \alpha_0 P_0(w)}, k = |k| \end{cases}
$$

Customers (words) enter a restaurant and choose a table according to the distribution:

$$
P(z_i = k | w_i = w, \mathbf{z}_{-i}) = \begin{cases} \frac{n_k^{2-i}}{n_w + \alpha_0 P_0(w)}, 0 \le k < |k| \\ \frac{\alpha_0 P_0(w)}{n_w + \alpha_0 P_0(w)}, k = |k| \end{cases}
$$

Customers (words) enter a restaurant and choose a table according to the distribution:

$$
P(z_i = k | w_i = w, \mathbf{z}_{-i}) = \begin{cases} \frac{n_k^{2-i}}{n_w + \alpha_0 P_0(w)}, 0 \le k < |k| \\ \frac{\alpha_0 P_0(w)}{n_w + \alpha_0 P_0(w)}, k = |k| \end{cases}
$$

Customers (words) enter a restaurant and choose a table according to the distribution:

$$
P(z_i = k | w_i = w, \mathbf{z}_{-i}) = \begin{cases} \frac{n_k^{2-i}}{n_w + \alpha_0 P_0(w)}, 0 \le k < |k| \\ \frac{\alpha_0 P_0(w)}{n_w + \alpha_0 P_0(w)}, k = |k| \end{cases}
$$

Customers (words) enter a restaurant and choose a table according to the distribution:

$$
P(z_i = k | w_i = w, \mathbf{z}_{-i}) = \begin{cases} \frac{n_k^{2-i}}{n_w + \alpha_0 P_0(w)}, 0 \leq k < |k| \\ \frac{\alpha_0 P_0(w)}{n_w + \alpha_0 P_0(w)}, k = |k| \end{cases}
$$

Customers (words) enter a restaurant and choose a table according to the distribution:

$$
P(z_i = k | w_i = w, \mathbf{z}_{-i}) = \begin{cases} \frac{n_k^{2-i}}{n_w + \alpha_0 P_0(w)}, 0 \leq k < |k| \\ \frac{\alpha_0 P_0(w)}{n_w + \alpha_0 P_0(w)}, k = |k| \end{cases}
$$

4.000.00

The 7*th* customer '*the*' enters the restaurant and choses a table from those already seating '*the*', or opening a new table:

$$
P(z_6 = 0 | w_6 = the, \mathbf{z}_{-6}) = \frac{2}{3 + \alpha_0 P_0(the)}
$$

The 7*th* customer '*the*' enters the restaurant and choses a table from those already seating '*the*', or opening a new table:

$$
P(z_6 = 2|w_6 = the, \mathbf{z}_{-6}) = \frac{1}{3 + \alpha_0 P_0(the)}
$$

The 7*th* customer '*the*' enters the restaurant and choses a table from those already seating '*the*', or opening a new table:

$$
P(z_6 = 4 | w_6 = the, \mathbf{z}_{-6}) = \frac{P_0(the)}{3 + \alpha_0 P_0(the)}
$$

Approximating the table counts

- GGJ06 sought to avoid explicitly tracking tables by reasoning under the expected table counts (*E*[*t^w*]).
- Antoniak(1974) derives the expected table count as equal to the recurrence:

$$
E[t_w] = \alpha_0 P_0(w) \sum_{i=1}^{n_w} \frac{1}{\alpha_0 P_0(w) + i - 1}
$$

Antoniak also suggests an approximation to this expectation which GGJ06 presents as:

$$
E[t_w] \approx \alpha_0 \log \frac{n_w + \alpha_0}{\alpha_0}
$$

Approximating the table counts

- GGJ06 sought to avoid explicitly tracking tables by reasoning under the expected table counts (*E*[*t^w*]).
- Antoniak(1974) derives the expected table count as equal to the recurrence:

$$
E[t_w] = \alpha_0 P_0(w) \sum_{i=1}^{n_w} \frac{1}{\alpha_0 P_0(w) + i - 1}
$$

Antoniak also suggests an approximation to this expectation which GGJ06 presents as: (corrected)

$$
E[t_w] \approx \alpha_0 P_0(w) \log \frac{n_w + \alpha_0 P_0(w)}{\alpha_0 P_0(w)}
$$

A better table count approximation

- Antoniak's approximation makes two assumptions:
	- \bullet α_0 is large, not the predominant situation in recent applications which employ a DP as a sparse prior,
	- \blacktriangleright $P_0(w)$ is constant, which is not applicable to HDPs.

• In our paper we derive an improved approximation based on a difference of digamma (ψ) functions:

$$
E[t_w] = \alpha_0 P_0(w) \cdot \left[\psi \Big(\alpha_0 P_0(w) + n_w \Big) - \psi \Big(\alpha_0 P_0(w) \Big) \right]
$$

 \bullet However the restriction on $P_0(w)$ being constant remains ...

DP performance

DP performance

DP performance

HDP performance

- At this point we don't have a useful approximation of the expected table counts in a HDP model.
- However, we can describe a more compact representation for the state of the restaurant that doesn't require explicit table tracking.
- Instead we maintain a histogram for each dish *wⁱ* of the frequency of a table having a particular number of customers.

重

D

 299

重

D

重

重

 299

K ロメ K 御 メ K 君 メ K 君 X

The table count approximation of Goldwater et al. 2006 is broken, don't use it!

Blunsom et al. (Uni. of Edinburgh) [A Note on the Implemention of HDPs](#page-0-0) August 4, 2009 13/1

Thank you.

References

P. Blunsom, T. Cohn, S. Goldwater and M. Johnson. A note on the implementation of hierarchical Dirichlet processes, *In the Proceedings of ACL-IJCNLP 2009*.

C. E. Antoniak. 1974. Mixtures of dirichlet processes with applications to bayesian nonparametric problems. *The Annals of Statistics*, 2(6):1152-1174.

S. Goldwater, T. Griffiths, M. Johnson. Contextual dependencies in unsupervised word segmentation. *In the Proceedings of (COLING/ACL-2006)*.

 Ω

イロト イ押ト イヨト イヨト