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Abstract

The implementation of collapsed Gibbs
samplers for non-parametric Bayesian
models is non-trivial, requiring consid-
erable book-keeping. ?) presented an
approximation which significantly reduces
the storage and computation overhead, but
we show here that their formulation was
incorrect and, even after correction, is
grossly inaccurate. We present an alterna-
tive formulation which is exact and can be
computed easily. However this approach
does not work for hierarchical models, for
which case we present an efficient data
structure which has a better space com-
plexity than the naive approach.

1 Introduction

Unsupervised learning of natural language is one
of the most challenging areas in NLP. Recently,
methods from nonparametric Bayesian statistics
have been gaining popularity as a way to approach
unsupervised learning for a variety of tasks,
including language modeling, word and mor-
pheme segmentation, parsing, and machine trans-
lation (?; ?; ?; ?; ?; ?). These models are often
based on the Dirichlet process (DP) (?) or hier-
archical Dirichlet process (HDP) (?), with Gibbs
sampling as a method of inference. Exact imple-
mentation of such sampling methods requires con-
siderable bookkeeping of various counts, which
motivated ?) (henceforth, GGJ06) to develop an
approximation using expected counts. However,
we show here that their approximation is flawed
in two respects: 1) It omits an important factor
in the expectation, and 2) Even after correction,
the approximation is poor for hierarchical mod-
els, which are commonly used for NLP appli-
cations. We derive an improved O(1) formula
that gives exact values for the expected counts in

non-hierarchical models. For hierarchical models,
where our formula is not exact, we present an
efficient method for sampling from the HDP (and
related models, such as the hierarchical Pitman-
Yor process) that considerably decreases the mem-
ory footprint of such models as compared to the
naive implementation.

As we have noted, the issues described in this
paper apply to models for various kinds of NLP
tasks; for concreteness, we will focus on n-gram
language modeling for the remainder of the paper,
closely following the presentation in GGJ06.

2 The Chinese Restaurant Process

GGJ06 present two nonparametric Bayesian lan-
guage models: a DP unigram model and an HDP
bigram model. Under the DP model, words in a
corpus w = w1 . . . wn are generated as follows:

G|α0, P0 ∼ DP(α0, P0)
wi|G ∼ G

where G is a distribution over an infinite set of
possible words, P0 (the base distribution of the
DP) determines the probability that an item will
be in the support of G, and α0 (the concentration
parameter) determines the variance of G.

One way of understanding the predictions that
the DP model makes is through the Chinese restau-
rant process (CRP) (?). In the CRP, customers
(word tokens wi) enter a restaurant with an infi-
nite number of tables and choose a seat. The table
chosen by the ith customer, zi, follows the distri-
bution:

P (zi = k|z−i) =

{
n
z−i
k

i−1+α0
, 0 ≤ k < K(z−i)

α0
i−1+α0

, k = K(z−i)

where z−i = z1 . . . zi−1 are the table assignments
of the previous customers, nz−i

k is the number of
customers at table k in z−i, andK(z−i) is the total
number of occupied tables. If we further assume
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Figure 1. A seating assignment describing the state of
a unigram CRP. Letters and numbers uniquely identify
customers and tables. Note that multiple tables may
share a label.

that table k is labeled with a word type `k drawn
from P0, then the assignment of tokens to tables
defines a distribution over words, with wi = `zi .
See Figure ?? for an example seating arrangement.

Using this model, the predictive probability of
wi, conditioned on the previous words, can be
found by summing over possible seating assign-
ments for wi, and is given by

P (wi = w|w−i) =
n

w−i
w + α0P0

i− 1 + α0
(1)

This prediction turns out to be exactly that of the
DP model after integrating out the distribution G.
Note that as long as the base distribution P0 is
fixed, predictions do not depend on the seating
arrangement z−i, only on the count of word w
in the previously observed words (nw−i

w ). How-
ever, in many situations, we may wish to estimate
the base distribution itself, creating a hierarchical
model. Since the base distribution generates table
labels, estimates of this distribution are based on
the counts of those labels, i.e., the number of tables
associated with each word type.

An example of such a hierarchical model is the
HDP bigram model of GGJ06, in which each word
typew is associated with its own restaurant, where
customers in that restaurant correspond to words
that follow w in the corpus. All the bigram restau-
rants share a common base distribution P1 over
unigrams, which must be inferred. Predictions in
this model are as follows:

P2(wi|h−i) =
n

h−i

(wi−1,wi)
+ α1P1(wi|h−i)

n
h−i

(wi−1,∗) + α1

P1(wi|h−i) =
t
h−i
wi + α0P0(wi)

t
h−i
∗ + α0

(2)

where h−i = (w−i, z−i), t
h−i
wi is the number of

tables labelled with wi, and th−i
∗ is the total num-

ber of occupied tables. Of particular note for our
discussion is that in order to calculate these condi-
tional distributions we must know the table assign-
ments z−i for each of the words in w−i. Moreover,
in the Gibbs samplers often used for inference in
these kinds of models, the counts are constantly
changing over multiple samples, with tables going
in and out of existence frequently. This can create
significant bookkeeping issues in implementation,
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Figure 2. Comparison of several methods of approx-
imating the number of tables occupied by words of
different frequencies. For each method, results using
α = {100, 1000, 10000, 100000} are shown (from bottom
to top). Solid lines show the expected number of tables,
computed using (??) and assuming P1 is a fixed uniform
distribution over a finite vocabulary (values computed
using the Digamma formulation (??) are the same).
Dashed lines show the values given by the Antoniak
approximation (??) (the line for α = 100 falls below the
bottom of the graph). Stars show the mean of empirical
table counts as computed over 1000 samples from an
MCMC sampler in which P1 is a fixed uniform distri-
bution, as in the unigram LM. Circles show the mean
of empirical table counts when P1 is inferred, as in the
bigram LM. Standard errors in both cases are no larger
than the marker size. All plots are based on the 30114-
word vocabulary and frequencies found in sections 0-20
of the WSJ corpus.

and motivated GGJ06 to present a method of com-
puting approximate table counts based on word
frequencies only.

3 Approximating Table Counts

Rather than explicitly tracking the number of
tables tw associated with each word w in their
bigram model, GGJ06 approximate the table
counts using the expectation E[tw]. Expected
counts are used in place of th−i

wi and th−i
∗ in (??).

The exact expectation, due to ?), is

E[tw] = α1P1(w)
nw∑
i=1

1
α1P1(w) + i− 1

(3)

Antoniak also gives an approximation to this
expectation:

E[tw] ≈ α1P1(w) log
nw + α1P1(w)
α1P1(w)

(4)

but provides no derivation. Due to a misinterpreta-
tion of ?), GGJ06 use an approximation that leaves



out all the P1(w) terms from (??).1 Figure ?? com-
pares the approximation to the exact expectation
when the base distribution is fixed. The approx-
imation is fairly good when αP1(w) > 1 (the
scenario assumed by Antoniak); however, in most
NLP applications, αP1(w) < 1 in order to effect
a sparse prior. (We return to the case of non-fixed
based distributions in a moment.) As an extreme
case of the paucity of this approximation consider
α1P1(w) = 1 and nw = 1 (i.e. only one customer
has entered the restaurant): clearly E[tw] should
equal 1, but the approximation gives log(2).

We now provide a derivation for (??), which
will allow us to obtain an O(1) formula for the
expectation in (??). First, we rewrite the summa-
tion in (??) as a difference of fractional harmonic
numbers:2

H(α1P1(w)+nw−1) −H(α1P1(w)−1) (5)

Using the recurrence for harmonic numbers:

E[tw] ≈ α1P1(w)
[
H(α1P1(w)+nw)−

1
α1P1(w) + nw

−H(α1P1(w)+nw) +
1

α1P1(w)

]
(6)

We then use the asymptotic expansion,
HF ≈ logF + γ + 1

2F , omiting trailing terms
which are O(F−2) and smaller powers of F :3

E[tw] ≈ α1P1(w) log nw+α1P1(w)
α1P1(w) + nw

2(α1P1(w)+nw)

Omitting the trailing term leads to the approx-
imation in ?). However, we can obtain an exact
formula for the expectation by utilising the rela-
tionship between the Digamma function and the
harmonic numbers: ψ(n) = Hn−1 − γ.4 Thus we
can rewrite (??) as:5

E[tw] = α1P1(w)·[
ψ(α1P1(w) + nw)− ψ(α1P1(w))

]
(7)

A significant caveat here is that the expected
table counts given by (??) and (??) are only valid
when the base distribution is a constant. However,
in hierarchical models such as GGJ06’s bigram
model and HDP models, the base distribution is
not constant and instead must be inferred. As can

1The authors of GGJ06 realized this error, and current
implementations of their models no longer use these approx-
imations, instead tracking table counts explicitly.

2Fractional harmonic numbers between 0 and 1 are given
by HF =

R 1

0
1−xF

1−x dx. All harmonic numbers follow the
recurrence HF = HF−1 + 1

F
.

3Here, γ is the Euler-Mascheroni constant.
4AccurateO(1) approximations of the Digamma function

are readily available.
5(??) can be derived from (??) using: ψ(x+1)−ψ(x) =

1
x

.

Explicit table tracking:
customer(wi)→ table(zi)n
a : 1, b : 1, c : 2, d : 2, e : 3, f : 4, g : 5, h : 5

o
table(zi)→ label(`)n

1 : The, 2 : cats, 3 : cats, 4 : meow, 5 : cats
o

Histogram:
word type→

{
table occupancy→ frequency

}
n
The : {2 : 1}, cats : {1 : 1, 2 : 2}, meow : {1 : 1}

o
Figure 3. The explicit table tracking and histogram rep-
resentations for Figure ??.

be seen in Figure ??, table counts can diverge
considerably from the expectations based on fixed
P1 when P1 is in fact not fixed. Thus, (??) can
be viewed as an approximation in this case, but
not necessarily an accurate one. Since knowing
the table counts is only necessary for inference
in hierarchical models, but the table counts can-
not be approximated well by any of the formu-
las presented here, we must conclude that the best
inference method is still to keep track of the actual
table counts. The naive method of doing so is to
store which table each customer in the restaurant
is seated at, incrementing and decrementing these
counts as needed during the sampling process. In
the following section, we describe an alternative
method that reduces the amount of memory neces-
sary for implementing HDPs. This method is also
appropriate for hierarchical Pitman-Yor processes,
for which no closed-form approximations to the
table counts have been proposed.

4 Efficient Implementation of HDPs

As we do not have an efficient expected table
count approximation for hierarchical models we
could fall back to explicitly tracking which table
each customer that enters the restaurant sits at.
However, here we describe a more compact repre-
sentation for the state of the restaurant that doesn’t
require explicit table tracking.6 Instead we main-
tain a histogram for each dish wi of the frequency
of a table having a particular number of customers.
Figure ?? depicts the histogram and explicit repre-
sentations for the CRP state in Figure ??.

Our alternative method of inference for hierar-
chical Bayesian models takes advantage of their
exchangeability, which makes it unnecessary to
know exactly which table each customer is seated
at. The only important information is how many
tables exist with different numbers of customers,
and what their labels are. We simply maintain a
histogram for each word type w, which stores, for

6?) also note that the exact table assignments for cus-
tomers are not required for prediction.



Algorithm 1 A new customer enters the restaurant
1: w: word type
2: Pw0 : Base probability for w
3: HDw: Seating Histogram for w
4: procedure INCREMENT(w,Pw0 ,HDw)

5: pshare ← n
w−1
w

n
w−1
w +α0

. share an existing table

6: pnew ← α0×Pw
0

n
w−1
w +α0

. open a new table

7: r ← random(0, pshare + pnew)
8: if r < pnew or nw−1

w = 0 then
9: HDw[1] = HDw[1] + 1

10: else
. Sample from the histogram of customers at tables

11: r ← random(0, n
w−1
w )

12: for c ∈ HDw do . c: customer count
13: r = r − (c× HDw[c])
14: if r ≤ 0 then
15: HDw[c] = HDw[c] + 1
16: Break
17: nw

w = n
w−1
w + 1 . Update token count

Algorithm 2 A customer leaves the restaurant
1: w: word type
2: HDw: Seating histogram for w
3: procedure DECREMENT(w,Pw0 ,HDw)
4: r ← random(0, nw

w )
5: for c ∈ HDw do . c: customer count
6: r = r − (c× HDw[c])
7: if r ≤ 0 then
8: HDw[c] = HDw[c]− 1
9: if c > 1 then

10: HDw[c− 1] = HDw[c− 1] + 1

11: Break
12: nw

w = nw
w − 1 . Update token count

each number of customersm, the number of tables
labeled with w that have m customers. Figure ??
depicts the explicit representation and histogram
for the CRP state in Figure ??.

Algorithms ?? and ?? describe the two oper-
ations required to maintain the state of a CRP.7

When a customer enters the restaurant (Alogrithm
??)), we sample whether or not to open a new
table. If not, we sample an old table proportional to
the counts of how many customers are seated there
and update the histogram. When a customer leaves
the restaurant (Algorithm ??), we decrement one
of the tables at random according to the number
of customers seated there. By exchangeability, it
doesn’t actually matter which table the customer
was “really” sitting at.

5 Conclusion

We’ve shown that the HDP approximation pre-
sented in GGJ06 contained errors and inappropri-
ate assumptions such that it significantly diverges
from the true expectations for the most com-
mon scenarios encountered in NLP. As such we
emphasise that that formulation should not be

7A C++ template class that implements
the algorithm presented is made available at:
http://homepages.inf.ed.ac.uk/tcohn/

used. Although (??) allows E[tw] to be calculated
exactly for constant base distributions, for hierar-
chical models this is not valid and no accurate cal-
culation of the expectations has been proposed. As
a remedy we’ve presented an algorithm that effi-
ciently implements the true HDP without the need
for explicitly tracking customer to table assign-
ments, while remaining simple to implement.
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