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Phrase clustering

Phrases are defined as contiguous spans
aligned with each other

| 'll bring you some now .
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Phrase clustering

Contexts are words before or after the phrase:

target side context
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1 'll bring you some now .

source side context



Objective

Put all phrase-context pairs into categories
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Outline

«EM with posterior regularization

context
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Expectation-Maximization

.naive Bayes model for phrase labeling
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EM clustering

.naive Bayes model for phrase labeling

Unobserved

12



EM clustering

.naive Bayes model for phrase labeling
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EM clustering

.naive Bayes model for phrase labeling

q(zlp,c) = Py(z|p,c)

7~ N
_E-step | M-step |
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EM clustering

.naive Bayes model for phrase labeling

q(zlp,c) = Py(z|p,c)

7~ N

,

0 = MLE q(z|p,c)

15



Problem with EM

.Problem: EM uses as many categories as
It wants for each phrase.

.\We want to limit the number of categories
associated with each phrase.



Sparsity constraints

.Sparsity:Each phrase/context should be labeled
with fewer kinds of labels.
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Sparsity constraints

Minimize Y., , max;P(z|p;)
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Sparsity constraints

Minimize Y., , max;P(z|p;)
Phrase: there are

Contexts:
| understand there are some sightseeing bus tours here , is

that right ?

there are only a few seats left in the dress circle .

well , of course there are fine restaurants .

your hotel brochure shows there are some tennis counts at
your hotel .
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Sparsity constraints

Minimize Y., , max;P(z|p;)
Phrase: there are

Contexts:
| understand some sightseeing
only a
of course fine restaurants

brochure shows some tennis
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Sparsity constraints

Minimize Y., , max;P(z|p;)
Phrase: there are

Contexts:
| understand _ some
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<s><s> onlya

of course _ fine
restaurants
brochure shows _
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Sparsity constraints
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Sparsity constraints

Minimize Y., , max;P(z|p;)
Contexts:
| understand _ some

Phrase: there are

LIS |
oo ||
restaurants
some tennis 0

max P(tag|phrase)
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Sparsity constraints

Minimize Y., , max;P(z|p;)
Phrase: there are

Contexts:
| understand _ some
sightseeing

<s><s> onlya

of course _ fine
restaurants
brochure shows _
some tennis

max P(tag|phrase)
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Posterior Regularization

.Follows Posterior Regularization for Structured
Latent Variable Models, Ganchev et al., 2009
.During E-step, impose constraints on the
posterior g to guide the search
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Posterior Regularization

«Impose constraints on the posterior g

q(z|p, c) = argmin KL(q||P)
q€dq

00 N

=y o=

0 = MLE q(z|p,c)
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Posterior Regularization

«Impose constraints on the posterior g

q(z|p, c) = argmin KL(q||P)
q€dq
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Sparsity constraints

Minimize Y., , max;P(z|p;)
Phrase: like this

Contexts: Define feature functions:

i understand _ some lifp=iandz=j
onderst .2 = | _
sightseeing $i(p,2) 0 otherwise

<s><s> onlya

of course _ fine
restaurants
brochure shows
some tennis



Sparsity constraints

Minimize Y., , max;P(z|p;)

« Soft constraint. Softness
controlled by o.
* During E-step, find g distribution:

min KL(q||Pg) + O'z Cp 2

4,Cp,z o
s.t. Egle, .| < ¢y,

where “c’s are maximums of
expectation for each word tag pair
by definition.
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Primitive results

.Constrained model gives clustering that's more
sparse

«Clustering for a few phrases with 25 tags on
BTEC ZH-EN

Phrase/Word Count of the Number of tags
most used tag used
the 1194 1571 11 4

there Is 53 50 5 4
‘d like 723 873 5 2
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More experiments

.agreement constraint: different “good” models
should agree on posterior distribution

.what model to agree with: another naive Bayes
model in the reverse direction or in the other
language.
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Agreement model

.Implementation:
multiply posteriors
of two models
together.
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Agreement model

.Implementation:
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Agreement model
ras
contex!

X

.Implementation:
multiply posteriors
English side of two models

Context together.
o> @) — B

Chinese/Urdu side

@
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Outline

.results and future experiments
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Evaluation through the translation pipeline on
Urdu-English data
BLEU score, higher Is better

25
24
m1tag
23 m 1 tag+POS
m Supervised
EM
22 PR 0=100
m Agree-language
21 - Agree-direction
¥ non-parametric
20 -
19 -

“‘Baseline” Developed
During WS10




Evaluation against supervised grammar
(Conditional Entropy, lower Is better)

“Baseline”

m1tag

m 1tag+POS
Supervised
EM

® PR 0=100
Agree-language

m Agree-direction
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Confusion matrix against supervised
labeling

EM

Agreement
model
between
languages




Things we didn’'t have time to get
working

«Semi-supervised training with POS tags.
.Label single-word phrases with their POS tags.
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Things we didn’'t have time to get
working

.variational Bayes inference
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Things we didn’'t have time to get
working

.variational Bayes inference
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Outline

.Where do phrases come from?
«EM with posterior regularization
oresults and future experiments

Thanks!
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Projected Gradient Descent
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