#ifndef LM_BINARY_FORMAT__ #define LM_BINARY_FORMAT__ #include "lm/config.hh" #include "lm/model_type.hh" #include "lm/read_arpa.hh" #include "util/file_piece.hh" #include "util/mmap.hh" #include "util/scoped.hh" #include <cstddef> #include <vector> #include <stdint.h> namespace lm { namespace ngram { /*Inspect a file to determine if it is a binary lm. If not, return false. * If so, return true and set recognized to the type. This is the only API in * this header designed for use by decoder authors. */ bool RecognizeBinary(const char *file, ModelType &recognized); struct FixedWidthParameters { unsigned char order; float probing_multiplier; // What type of model is this? ModelType model_type; // Does the end of the file have the actual strings in the vocabulary? bool has_vocabulary; unsigned int search_version; }; // This is a macro instead of an inline function so constants can be assigned using it. #define ALIGN8(a) ((std::ptrdiff_t(((a)-1)/8)+1)*8) // Parameters stored in the header of a binary file. struct Parameters { FixedWidthParameters fixed; std::vector<uint64_t> counts; }; struct Backing { // File behind memory, if any. util::scoped_fd file; // Vocabulary lookup table. Not to be confused with the vocab words themselves. util::scoped_memory vocab; // Raw block of memory backing the language model data structures util::scoped_memory search; }; // Create just enough of a binary file to write vocabulary to it. uint8_t *SetupJustVocab(const Config &config, uint8_t order, std::size_t memory_size, Backing &backing); // Grow the binary file for the search data structure and set backing.search, returning the memory address where the search data structure should begin. uint8_t *GrowForSearch(const Config &config, std::size_t vocab_pad, std::size_t memory_size, Backing &backing); // Write header to binary file. This is done last to prevent incomplete files // from loading. void FinishFile(const Config &config, ModelType model_type, unsigned int search_version, const std::vector<uint64_t> &counts, std::size_t vocab_pad, Backing &backing); namespace detail { bool IsBinaryFormat(int fd); void ReadHeader(int fd, Parameters ¶ms); void MatchCheck(ModelType model_type, unsigned int search_version, const Parameters ¶ms); void SeekPastHeader(int fd, const Parameters ¶ms); uint8_t *SetupBinary(const Config &config, const Parameters ¶ms, uint64_t memory_size, Backing &backing); void ComplainAboutARPA(const Config &config, ModelType model_type); } // namespace detail template <class To> void LoadLM(const char *file, const Config &config, To &to) { Backing &backing = to.MutableBacking(); backing.file.reset(util::OpenReadOrThrow(file)); try { if (detail::IsBinaryFormat(backing.file.get())) { Parameters params; detail::ReadHeader(backing.file.get(), params); detail::MatchCheck(To::kModelType, To::kVersion, params); // Replace the run-time configured probing_multiplier with the one in the file. Config new_config(config); new_config.probing_multiplier = params.fixed.probing_multiplier; detail::SeekPastHeader(backing.file.get(), params); To::UpdateConfigFromBinary(backing.file.get(), params.counts, new_config); uint64_t memory_size = To::Size(params.counts, new_config); uint8_t *start = detail::SetupBinary(new_config, params, memory_size, backing); to.InitializeFromBinary(start, params, new_config, backing.file.get()); } else { detail::ComplainAboutARPA(config, To::kModelType); to.InitializeFromARPA(file, config); } } catch (util::Exception &e) { e << " File: " << file; throw; } } } // namespace ngram } // namespace lm #endif // LM_BINARY_FORMAT__