// STL #include #include #include #include // Boost #include #include #include // Local #include "pyp-topics.hh" #include "corpus.hh" #include "contexts_corpus.hh" #include "gzstream.hh" #include "mt19937ar.h" static const char *REVISION = "$Rev$"; // Namespaces using namespace boost; using namespace boost::program_options; using namespace std; int main(int argc, char **argv) { cout << "Pitman Yor topic models: Copyright 2010 Phil Blunsom\n"; cout << REVISION << '\n' <(), "file containing the documents and context terms") ("topics,t", value()->default_value(50), "number of topics") ("document-topics-out,o", value(), "file to write the document topics to") ("default-topics-out", value(), "file to write default term topic assignments.") ("topic-words-out,w", value(), "file to write the topic word distribution to") ("samples,s", value()->default_value(10), "number of sampling passes through the data") ("backoff-type", value(), "backoff type: none|simple") ("filter-singleton-contexts", "filter singleton contexts") ("hierarchical-topics", "Use a backoff hierarchical PYP as the P0 for the document topics distribution.") ; store(parse_command_line(argc, argv, cmdline_options), vm); notify(vm); if (vm.count("help")) { cout << cmdline_options << "\n"; return 1; } } //////////////////////////////////////////////////////////////////////////////////////////// if (!vm.count("data")) { cerr << "Please specify a file containing the data." << endl; return 1; } // seed the random number generator //mt_init_genrand(time(0)); PYPTopics model(vm["topics"].as(), vm.count("hierarchical-topics")); // read the data BackoffGenerator* backoff_gen=0; if (vm.count("backoff-type")) { if (vm["backoff-type"].as() == "none") { backoff_gen = 0; } else if (vm["backoff-type"].as() == "simple") { backoff_gen = new SimpleBackoffGenerator(); } else { cerr << "Backoff type (--backoff-type) must be one of none|simple." <(), backoff_gen, vm.count("filter-singleton-contexts")); model.set_backoff(contexts_corpus.backoff_index()); if (backoff_gen) delete backoff_gen; // train the sampler model.sample(contexts_corpus, vm["samples"].as()); if (vm.count("document-topics-out")) { ogzstream documents_out(vm["document-topics-out"].as().c_str()); int document_id=0; map all_terms; for (Corpus::const_iterator corpusIt=contexts_corpus.begin(); corpusIt != contexts_corpus.end(); ++corpusIt, ++document_id) { vector unique_terms; for (Document::const_iterator docIt=corpusIt->begin(); docIt != corpusIt->end(); ++docIt) { if (unique_terms.empty() || *docIt != unique_terms.back()) unique_terms.push_back(*docIt); // increment this terms frequency pair::iterator,bool> insert_result = all_terms.insert(make_pair(*docIt,1)); if (!insert_result.second) insert_result.first++; } documents_out << contexts_corpus.key(document_id) << '\t'; for (std::vector::const_iterator termIt=unique_terms.begin(); termIt != unique_terms.end(); ++termIt) { if (termIt != unique_terms.begin()) documents_out << " ||| "; vector strings = contexts_corpus.context2string(*termIt); copy(strings.begin(), strings.end(),ostream_iterator(documents_out, " ")); documents_out << "||| C=" << model.max(document_id, *termIt); } documents_out <().c_str()); default_topics << model.max_topic() <::const_iterator termIt=all_terms.begin(); termIt != all_terms.end(); ++termIt) { vector strings = contexts_corpus.context2string(termIt->first); default_topics << model.max(-1, termIt->first) << " ||| " << termIt->second << " ||| "; copy(strings.begin(), strings.end(),ostream_iterator(default_topics, " ")); default_topics <().c_str()); model.print_topic_terms(topics_out); topics_out.close(); } cout <