#include "pyp-topics.hh" //#include "mt19937ar.h" #include <ctime> struct Timer { Timer() { Reset(); } void Reset() { start_t = clock(); } double Elapsed() const { const clock_t end_t = clock(); const double elapsed = (end_t - start_t) / 1000000.0; return elapsed; } private: std::clock_t start_t; }; void PYPTopics::sample(const Corpus& corpus, int samples) { Timer timer; if (!m_backoff.get()) { m_word_pyps.clear(); m_word_pyps.push_back(PYPs()); } std::cerr << " Training with " << m_word_pyps.size()-1 << " backoff level" << (m_word_pyps.size()==2 ? ":" : "s:") << std::endl; for (int i=0; i<(int)m_word_pyps.size(); ++i) m_word_pyps.at(i).resize(m_num_topics, PYP<int>(0.5, 1.0)); std::cerr << std::endl; m_document_pyps.resize(corpus.num_documents(), PYP<int>(0.5, 1.0)); m_topic_p0 = 1.0/m_num_topics; m_term_p0 = 1.0/corpus.num_types(); m_backoff_p0 = 1.0/corpus.num_documents(); std::cerr << " Documents: " << corpus.num_documents() << " Terms: " << corpus.num_types() << std::endl; timer.Reset(); // Initialisation pass int document_id=0, topic_counter=0; for (Corpus::const_iterator corpusIt=corpus.begin(); corpusIt != corpus.end(); ++corpusIt, ++document_id) { m_corpus_topics.push_back(DocumentTopics(corpusIt->size(), 0)); int term_index=0; for (Document::const_iterator docIt=corpusIt->begin(); docIt != corpusIt->end(); ++docIt, ++term_index) { topic_counter++; Term term = *docIt; // sample a new_topic //int new_topic = (topic_counter % m_num_topics); int new_topic = (document_id % m_num_topics); // add the new topic to the PYPs m_corpus_topics[document_id][term_index] = new_topic; increment(term, new_topic); m_document_pyps[document_id].increment(new_topic, m_topic_p0); } } std::cerr << " Initialized in " << timer.Elapsed() << " seconds\n"; int* randomDocIndices = new int[corpus.num_documents()]; for (int i = 0; i < corpus.num_documents(); ++i) randomDocIndices[i] = i; // Sampling phase for (int curr_sample=0; curr_sample < samples; ++curr_sample) { std::cerr << "\n -- Sample " << curr_sample << " "; std::cerr.flush(); // Randomize the corpus indexing array int tmp; for (int i = corpus.num_documents()-1; i > 0; --i) { int j = (int)(mt_genrand_real1() * i); tmp = randomDocIndices[i]; randomDocIndices[i] = randomDocIndices[j]; randomDocIndices[j] = tmp; } // for each document in the corpus int document_id; for (int i=0; i<corpus.num_documents(); ++i) { document_id = randomDocIndices[i]; // for each term in the document int term_index=0; Document::const_iterator docEnd = corpus.at(document_id).end(); for (Document::const_iterator docIt=corpus.at(document_id).begin(); docIt != docEnd; ++docIt, ++term_index) { Term term = *docIt; // remove the prevous topic from the PYPs int current_topic = m_corpus_topics[document_id][term_index]; decrement(term, current_topic); m_document_pyps[document_id].decrement(current_topic); // sample a new_topic int new_topic = sample(document_id, term); // add the new topic to the PYPs m_corpus_topics[document_id][term_index] = new_topic; increment(term, new_topic); m_document_pyps[document_id].increment(new_topic, m_topic_p0); } if (document_id && document_id % 10000 == 0) { std::cerr << "."; std::cerr.flush(); } } if (curr_sample != 0 && curr_sample % 10 == 0) { std::cerr << " ||| time=" << (timer.Elapsed() / 10.0) << " sec/sample" << std::endl; timer.Reset(); std::cerr << " ... Resampling hyperparameters "; std::cerr.flush(); // resample the hyperparamters F log_p=0.0; int resample_counter=0; for (std::vector<PYPs>::iterator levelIt=m_word_pyps.begin(); levelIt != m_word_pyps.end(); ++levelIt) { for (PYPs::iterator pypIt=levelIt->begin(); pypIt != levelIt->end(); ++pypIt) { pypIt->resample_prior(); log_p += pypIt->log_restaurant_prob(); if (resample_counter++ % 100 == 0) { std::cerr << "."; std::cerr.flush(); } } } for (PYPs::iterator pypIt=m_document_pyps.begin(); pypIt != m_document_pyps.end(); ++pypIt) { pypIt->resample_prior(); log_p += pypIt->log_restaurant_prob(); } std::cerr << " ||| LLH=" << log_p << " ||| resampling time=" << timer.Elapsed() << " sec" << std::endl; timer.Reset(); } } delete [] randomDocIndices; } void PYPTopics::decrement(const Term& term, int topic, int level) { //std::cerr << "PYPTopics::decrement(" << term << "," << topic << "," << level << ")" << std::endl; m_word_pyps.at(level).at(topic).decrement(term); if (m_backoff.get()) { Term backoff_term = (*m_backoff)[term]; if (!m_backoff->is_null(backoff_term)) decrement(backoff_term, topic, level+1); } } void PYPTopics::increment(const Term& term, int topic, int level) { //std::cerr << "PYPTopics::increment(" << term << "," << topic << "," << level << ")" << std::endl; m_word_pyps.at(level).at(topic).increment(term, word_pyps_p0(term, topic, level)); if (m_backoff.get()) { Term backoff_term = (*m_backoff)[term]; if (!m_backoff->is_null(backoff_term)) increment(backoff_term, topic, level+1); } } int PYPTopics::sample(const DocumentId& doc, const Term& term) { // First pass: collect probs F sum=0.0; std::vector<F> sums; for (int k=0; k<m_num_topics; ++k) { F p_w_k = prob(term, k); F p_k_d = m_document_pyps[doc].prob(k, m_topic_p0); sum += (p_w_k*p_k_d); sums.push_back(sum); } // Second pass: sample a topic F cutoff = mt_genrand_res53() * sum; for (int k=0; k<m_num_topics; ++k) { if (cutoff <= sums[k]) return k; } assert(false); } PYPTopics::F PYPTopics::word_pyps_p0(const Term& term, int topic, int level) const { //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "PYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ")" << std::endl; F p0 = m_term_p0; if (m_backoff.get()) { //static F fudge=m_backoff_p0; // TODO Term backoff_term = (*m_backoff)[term]; if (!m_backoff->is_null(backoff_term)) { assert (level < m_backoff->order()); p0 = (1.0/(double)m_backoff->terms_at_level(level))*prob(backoff_term, topic, level+1); } else p0 = m_term_p0; } //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "PYPTopics::word_pyps_p0(" << term << "," << topic << "," << level << ") = " << p0 << std::endl; return p0; } PYPTopics::F PYPTopics::prob(const Term& term, int topic, int level) const { //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "PYPTopics::prob(" << term << "," << topic << "," << level << " " << factor << ")" << std::endl; F p0 = word_pyps_p0(term, topic, level); F p_w_k = m_word_pyps.at(level).at(topic).prob(term, p0); //for (int i=0; i<level+1; ++i) std::cerr << " "; //std::cerr << "PYPTopics::prob(" << term << "," << topic << "," << level << ") = " << p_w_k << std::endl; return p_w_k; } int PYPTopics::max(const DocumentId& doc, const Term& term) { //std::cerr << "PYPTopics::max(" << doc << "," << term << ")" << std::endl; // collect probs F current_max=0.0; int current_topic=-1; for (int k=0; k<m_num_topics; ++k) { F p_w_k = prob(term, k); F p_k_d = m_document_pyps[doc].prob(k, m_topic_p0); F prob = (p_w_k*p_k_d); if (prob > current_max) { current_max = prob; current_topic = k; } } assert(current_topic >= 0); return current_topic; } std::ostream& PYPTopics::print_document_topics(std::ostream& out) const { for (CorpusTopics::const_iterator corpusIt=m_corpus_topics.begin(); corpusIt != m_corpus_topics.end(); ++corpusIt) { int term_index=0; for (DocumentTopics::const_iterator docIt=corpusIt->begin(); docIt != corpusIt->end(); ++docIt, ++term_index) { if (term_index) out << " "; out << *docIt; } out << std::endl; } return out; } std::ostream& PYPTopics::print_topic_terms(std::ostream& out) const { for (PYPs::const_iterator pypsIt=m_word_pyps.front().begin(); pypsIt != m_word_pyps.front().end(); ++pypsIt) { int term_index=0; for (PYP<int>::const_iterator termIt=pypsIt->begin(); termIt != pypsIt->end(); ++termIt, ++term_index) { if (term_index) out << " "; out << termIt->first << ":" << termIt->second; } out << std::endl; } return out; }