import sys import scipy.optimize from numpy import * from numpy.random import random, seed # # Step 1: load the concordance counts # edges_phrase_to_context = [] edges_context_to_phrase = [] types = {} context_types = {} num_edges = 0 for line in sys.stdin: phrase, rest = line.strip().split('\t') parts = rest.split('|||') edges_phrase_to_context.append((phrase, [])) for i in range(0, len(parts), 2): context, count = parts[i:i+2] ctx = tuple(filter(lambda x: x != '', context.split())) cnt = int(count.strip()[2:]) edges_phrase_to_context[-1][1].append((ctx, cnt)) cid = context_types.get(ctx, len(context_types)) if cid == len(context_types): context_types[ctx] = cid edges_context_to_phrase.append((ctx, [])) edges_context_to_phrase[cid][1].append((phrase, cnt)) for token in ctx: types.setdefault(token, len(types)) for token in phrase.split(): types.setdefault(token, len(types)) num_edges += 1 print 'Read in', num_edges, 'edges and', len(types), 'word types' # # Step 2: initialise the model parameters # num_tags = 5 num_types = len(types) num_phrases = len(edges_phrase_to_context) num_contexts = len(edges_context_to_phrase) delta = float(sys.argv[1]) assert sys.argv[2] in ('local', 'global') local = sys.argv[2] == 'local' if len(sys.argv) >= 2: seed(int(sys.argv[3])) def normalise(a): return a / float(sum(a)) # Pr(tag | phrase) tagDist = [normalise(random(num_tags)+1) for p in range(num_phrases)] # Pr(context at pos i = w | tag) indexed by i, tag, word contextWordDist = [[normalise(random(num_types)+1) for t in range(num_tags)] for i in range(4)] # # Step 3: expectation maximisation # class GlobalDualObjective: """ Objective, log(z), for all phrases s.t. lambda >= 0, sum_c lambda_pct <= scale """ def __init__(self, scale): self.scale = scale self.posterior = zeros((num_edges, num_tags)) self.q = zeros((num_edges, num_tags)) self.llh = 0 index = 0 for j, (phrase, edges) in enumerate(edges_phrase_to_context): for context, count in edges: for t in range(num_tags): prob = tagDist[j][t] for k, token in enumerate(context): prob *= contextWordDist[k][t][types[token]] self.posterior[index,t] = prob z = sum(self.posterior[index,:]) self.posterior[index,:] /= z self.llh += log(z) index += 1 def objective(self, ls): ls = ls.reshape((num_edges, num_tags)) logz = 0 index = 0 for j, (phrase, edges) in enumerate(edges_phrase_to_context): for context, count in edges: for t in range(num_tags): self.q[index,t] = self.posterior[index,t] * exp(-ls[index,t]) local_z = sum(self.q[index,:]) self.q[index,:] /= local_z logz += log(local_z) * count index += 1 return logz # FIXME: recomputes q many more times than necessary def gradient(self, ls): ls = ls.reshape((num_edges, num_tags)) gradient = zeros((num_edges, num_tags)) index = 0 for j, (phrase, edges) in enumerate(edges_phrase_to_context): for context, count in edges: for t in range(num_tags): self.q[index,t] = self.posterior[index,t] * exp(-ls[index,t]) local_z = sum(self.q[index,:]) self.q[index,:] /= local_z for t in range(num_tags): gradient[index,t] -= self.q[index,t] * count index += 1 return gradient.ravel() def constraints(self, ls): ls = ls.reshape((num_edges, num_tags)) cons = ones((num_phrases, num_tags)) * self.scale index = 0 for j, (phrase, edges) in enumerate(edges_phrase_to_context): for i, (context, count) in enumerate(edges): for t in range(num_tags): cons[j,t] -= ls[index,t] index += 1 return cons.ravel() def constraints_gradient(self, ls): ls = ls.reshape((num_edges, num_tags)) gradient = zeros((num_phrases, num_tags, num_edges, num_tags)) index = 0 for j, (phrase, edges) in enumerate(edges_phrase_to_context): for i, (context, count) in enumerate(edges): for t in range(num_tags): gradient[j,t,index,t] -= 1 index += 1 return gradient.reshape((num_phrases*num_tags, num_edges*num_tags)) def optimize(self): ls = zeros(num_edges * num_tags) #print '\tpre lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) ls = scipy.optimize.fmin_slsqp(self.objective, ls, bounds=[(0, self.scale)] * num_edges * num_tags, f_ieqcons=self.constraints, fprime=self.gradient, fprime_ieqcons=self.constraints_gradient, iprint=0) # =2 for verbose #print '\tpost lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) # returns llh, kl and l1lmax contribution l1lmax = 0 index = 0 for j, (phrase, edges) in enumerate(edges_phrase_to_context): for t in range(num_tags): lmax = None for i, (context, count) in enumerate(edges): lmax = max(lmax, self.q[index+i,t]) l1lmax += lmax index += len(edges) return self.llh, -self.objective(ls) + dot(ls, self.gradient(ls)), l1lmax class LocalDualObjective: """ Local part of objective, log(z) relevant to lambda_p**. Optimised subject to lambda >= 0, sum_c lambda_pct <= scale forall t """ def __init__(self, phraseId, scale): self.phraseId = phraseId self.scale = scale edges = edges_phrase_to_context[self.phraseId][1] self.posterior = zeros((len(edges), num_tags)) self.q = zeros((len(edges), num_tags)) self.llh = 0 for i, (context, count) in enumerate(edges): for t in range(num_tags): prob = tagDist[phraseId][t] for j, token in enumerate(context): prob *= contextWordDist[j][t][types[token]] self.posterior[i,t] = prob z = sum(self.posterior[i,:]) self.posterior[i,:] /= z self.llh += log(z) def objective(self, ls): edges = edges_phrase_to_context[self.phraseId][1] ls = ls.reshape((len(edges), num_tags)) logz = 0 for i, (context, count) in enumerate(edges): for t in range(num_tags): self.q[i,t] = self.posterior[i,t] * exp(-ls[i,t]) local_z = sum(self.q[i,:]) self.q[i,:] /= local_z logz += log(local_z) * count return logz # FIXME: recomputes q many more times than necessary def gradient(self, ls): edges = edges_phrase_to_context[self.phraseId][1] ls = ls.reshape((len(edges), num_tags)) gradient = zeros((len(edges), num_tags)) for i, (context, count) in enumerate(edges): for t in range(num_tags): self.q[i,t] = self.posterior[i,t] * exp(-ls[i,t]) local_z = sum(self.q[i,:]) self.q[i,:] /= local_z for t in range(num_tags): gradient[i,t] -= self.q[i,t] * count return gradient.ravel() def constraints(self, ls): edges = edges_phrase_to_context[self.phraseId][1] ls = ls.reshape((len(edges), num_tags)) cons = ones(num_tags) * self.scale for t in range(num_tags): for i, (context, count) in enumerate(edges): cons[t] -= ls[i,t] return cons def constraints_gradient(self, ls): edges = edges_phrase_to_context[self.phraseId][1] ls = ls.reshape((len(edges), num_tags)) gradient = zeros((num_tags, len(edges), num_tags)) for t in range(num_tags): for i, (context, count) in enumerate(edges): gradient[t,i,t] -= 1 return gradient.reshape((num_tags, len(edges)*num_tags)) def optimize(self): edges = edges_phrase_to_context[self.phraseId][1] ls = zeros(len(edges) * num_tags) #print '\tpre lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) ls = scipy.optimize.fmin_slsqp(self.objective, ls, bounds=[(0, self.scale)] * len(edges) * num_tags, f_ieqcons=self.constraints, fprime=self.gradient, fprime_ieqcons=self.constraints_gradient, iprint=0) # =2 for verbose #print '\tpost lambda optimisation dual', self.objective(ls) #, 'primal', primal(lamba) # returns llh, kl and l1lmax contribution l1lmax = 0 for t in range(num_tags): lmax = None for i, (context, count) in enumerate(edges): lmax = max(lmax, self.q[i,t]) l1lmax += lmax return self.llh, -self.objective(ls) + dot(ls, self.gradient(ls)), l1lmax for iteration in range(20): tagCounts = [zeros(num_tags) for p in range(num_phrases)] contextWordCounts = [[zeros(num_types) for t in range(num_tags)] for i in range(4)] # E-step llh = kl = l1lmax = 0 if local: for p in range(num_phrases): o = LocalDualObjective(p, delta) #print '\toptimising lambda for phrase', p, '=', edges_phrase_to_context[p][0] obj = o.optimize() print '\tphrase', p, 'deltas', obj llh += obj[0] kl += obj[1] l1lmax += obj[2] edges = edges_phrase_to_context[p][1] for j, (context, count) in enumerate(edges): for t in range(num_tags): tagCounts[p][t] += count * o.q[j,t] for i in range(4): for t in range(num_tags): contextWordCounts[i][t][types[context[i]]] += count * o.q[j,t] #print 'iteration', iteration, 'LOCAL objective', (llh + kl + delta * l1lmax), 'llh', llh, 'kl', kl, 'l1lmax', l1lmax else: o = GlobalDualObjective(delta) obj = o.optimize() llh, kl, l1lmax = o.optimize() index = 0 for p, (phrase, edges) in enumerate(edges_phrase_to_context): for context, count in edges: for t in range(num_tags): tagCounts[p][t] += count * o.q[index,t] for i in range(4): for t in range(num_tags): contextWordCounts[i][t][types[context[i]]] += count * o.q[index,t] index += 1 print 'iteration', iteration, 'objective', (llh + kl + delta * l1lmax), 'llh', llh, 'kl', kl, 'l1lmax', l1lmax # M-step for p in range(num_phrases): tagDist[p] = normalise(tagCounts[p]) for i in range(4): for t in range(num_tags): contextWordDist[i][t] = normalise(contextWordCounts[i][t]) for p, (phrase, ccs) in enumerate(edges_phrase_to_context): for context, count in ccs: conditionals = zeros(num_tags) for t in range(num_tags): prob = tagDist[p][t] for i in range(4): prob *= contextWordDist[i][t][types[context[i]]] conditionals[t] = prob cz = sum(conditionals) conditionals /= cz print '%s\t%s ||| C=%d ||| %d |||' % (phrase, context, count, argmax(conditionals)), conditionals