#include #include #include #include #include "tdict.h" #include "stringlib.h" #include "filelib.h" #include "array2d.h" #include "sampler.h" #include "corpus.h" #include "pyp_tm.h" using namespace std; namespace po = boost::program_options; void InitCommandLine(int argc, char** argv, po::variables_map* conf) { po::options_description opts("Configuration options"); opts.add_options() ("samples,s",po::value()->default_value(1000),"Number of samples") ("input,i",po::value(),"Read parallel data from") ("random_seed,S",po::value(), "Random seed"); po::options_description clo("Command line options"); clo.add_options() ("config", po::value(), "Configuration file") ("help,h", "Print this help message and exit"); po::options_description dconfig_options, dcmdline_options; dconfig_options.add(opts); dcmdline_options.add(opts).add(clo); po::store(parse_command_line(argc, argv, dcmdline_options), *conf); if (conf->count("config")) { ifstream config((*conf)["config"].as().c_str()); po::store(po::parse_config_file(config, dconfig_options), *conf); } po::notify(*conf); if (conf->count("help") || (conf->count("input") == 0)) { cerr << dcmdline_options << endl; exit(1); } } MT19937* prng; struct LexicalAlignment { unsigned char src_index; bool is_transliteration; vector > derivation; }; struct AlignedSentencePair { vector src; vector trg; vector a; Array2D posterior; }; struct Aligner { Aligner(const vector >& lets, int num_letters, vector* c) : corpus(*c), model(lets, num_letters), kNULL(TD::Convert("NULL")) { assert(lets[kNULL].size() == 0); } vector& corpus; PYPLexicalTranslation model; const WordID kNULL; void ResampleHyperparameters() { model.ResampleHyperparameters(prng); } void InitializeRandom() { cerr << "Initializing with random alignments ...\n"; for (unsigned i = 0; i < corpus.size(); ++i) { AlignedSentencePair& asp = corpus[i]; asp.a.resize(asp.trg.size()); for (unsigned j = 0; j < asp.trg.size(); ++j) { unsigned char& a_j = asp.a[j].src_index; a_j = prng->next() * (1 + asp.src.size()); const WordID f_a_j = (a_j ? asp.src[a_j - 1] : kNULL); model.Increment(f_a_j, asp.trg[j], &*prng); } } cerr << "Corpus intialized randomly. LLH = " << model.Likelihood() << endl; } void ResampleCorpus() { for (unsigned i = 0; i < corpus.size(); ++i) { AlignedSentencePair& asp = corpus[i]; SampleSet ss; ss.resize(asp.src.size() + 1); for (unsigned j = 0; j < asp.trg.size(); ++j) { unsigned char& a_j = asp.a[j].src_index; const WordID e_j = asp.trg[j]; WordID f_a_j = (a_j ? asp.src[a_j - 1] : kNULL); model.Decrement(f_a_j, e_j, prng); for (unsigned prop_a_j = 0; prop_a_j <= asp.src.size(); ++prop_a_j) { const WordID prop_f = (prop_a_j ? asp.src[prop_a_j - 1] : kNULL); ss[prop_a_j] = model.Prob(prop_f, e_j); } a_j = prng->SelectSample(ss); f_a_j = (a_j ? asp.src[a_j - 1] : kNULL); model.Increment(f_a_j, e_j, prng); } } cerr << "LLH = " << model.Likelihood() << " " << model.UniqueConditioningContexts() << endl; } }; void ExtractLetters(const set& v, vector >* l, set* letset = NULL) { for (set::const_iterator it = v.begin(); it != v.end(); ++it) { vector& letters = (*l)[*it]; if (letters.size()) continue; // if e and f have the same word const string& w = TD::Convert(*it); size_t cur = 0; while (cur < w.size()) { const size_t len = UTF8Len(w[cur]); letters.push_back(TD::Convert(w.substr(cur, len))); if (letset) letset->insert(letters.back()); cur += len; } } } void Debug(const AlignedSentencePair& asp) { cerr << TD::GetString(asp.src) << endl << TD::GetString(asp.trg) << endl; Array2D a(asp.src.size(), asp.trg.size()); for (unsigned j = 0; j < asp.trg.size(); ++j) { assert(asp.a[j].src_index <= asp.src.size()); if (asp.a[j].src_index) a(asp.a[j].src_index - 1, j) = true; } cerr << a << endl; } void AddSample(AlignedSentencePair* asp) { for (unsigned j = 0; j < asp->trg.size(); ++j) asp->posterior(asp->a[j].src_index, j)++; } void WriteAlignments(const AlignedSentencePair& asp) { bool first = true; for (unsigned j = 0; j < asp.trg.size(); ++j) { int src_index = -1; int mc = -1; for (unsigned i = 0; i <= asp.src.size(); ++i) { if (asp.posterior(i, j) > mc) { mc = asp.posterior(i, j); src_index = i; } } if (src_index) { if (first) first = false; else cout << ' '; cout << (src_index - 1) << '-' << j; } } cout << endl; } int main(int argc, char** argv) { po::variables_map conf; InitCommandLine(argc, argv, &conf); if (conf.count("random_seed")) prng = new MT19937(conf["random_seed"].as()); else prng = new MT19937; vector > corpuse, corpusf; set vocabe, vocabf; corpus::ReadParallelCorpus(conf["input"].as(), &corpusf, &corpuse, &vocabf, &vocabe); cerr << "f-Corpus size: " << corpusf.size() << " sentences\n"; cerr << "f-Vocabulary size: " << vocabf.size() << " types\n"; cerr << "f-Corpus size: " << corpuse.size() << " sentences\n"; cerr << "f-Vocabulary size: " << vocabe.size() << " types\n"; assert(corpusf.size() == corpuse.size()); vector corpus(corpuse.size()); for (unsigned i = 0; i < corpuse.size(); ++i) { corpus[i].src.swap(corpusf[i]); corpus[i].trg.swap(corpuse[i]); corpus[i].posterior.resize(corpus[i].src.size() + 1, corpus[i].trg.size()); } corpusf.clear(); corpuse.clear(); vocabf.insert(TD::Convert("NULL")); vector > letters(TD::NumWords()); set letset; ExtractLetters(vocabe, &letters, &letset); ExtractLetters(vocabf, &letters, NULL); letters[TD::Convert("NULL")].clear(); Aligner aligner(letters, letset.size(), &corpus); aligner.InitializeRandom(); const unsigned samples = conf["samples"].as(); for (int i = 0; i < samples; ++i) { for (int j = 65; j < 67; ++j) Debug(corpus[j]); if (i % 7 == 6) aligner.ResampleHyperparameters(); aligner.ResampleCorpus(); if (i > (samples / 5) && (i % 10 == 9)) for (int j = 0; j < corpus.size(); ++j) AddSample(&corpus[j]); } for (unsigned i = 0; i < corpus.size(); ++i) WriteAlignments(corpus[i]); aligner.model.Summary(); return 0; }