#!/usr/bin/env python import sys, math, itertools ginfile = open(sys.argv[1]) pinfile = open(sys.argv[2]) if len(sys.argv) > 3: slash_threshold = int(sys.argv[3]) #print >>sys.stderr, 'slash threshold', slash_threshold else: slash_threshold = 99999 # evaluating: H(G | P) = sum_{g,p} p(g,p) log { p(p) / p(g,p) } # = sum_{g,p} c(g,p)/N { log c(p) - log N - log c(g,p) + log N } # = 1/N sum_{g,p} c(g,p) { log c(p) - log c(g,p) } # where G = gold, P = predicted, N = number of events N = 0 gold_frequencies = {} predict_frequencies = {} joint_frequencies = {} for gline, pline in itertools.izip(ginfile, pinfile): gparts = gline.split('||| ')[1].split() pparts = pline.split('||| ')[1].split() assert len(gparts) == len(pparts) for gpart, ppart in zip(gparts, pparts): gtag = gpart.split(':',1)[1] ptag = ppart.split(':',1)[1] if gtag.count('/') + gtag.count('\\') <= slash_threshold: joint_frequencies.setdefault((gtag, ptag), 0) joint_frequencies[gtag,ptag] += 1 predict_frequencies.setdefault(ptag, 0) predict_frequencies[ptag] += 1 gold_frequencies.setdefault(gtag, 0) gold_frequencies[gtag] += 1 N += 1 hg2p = 0 hp2g = 0 for (gtag, ptag), cgp in joint_frequencies.items(): hp2g += cgp * (math.log(predict_frequencies[ptag], 2) - math.log(cgp, 2)) hg2p += cgp * (math.log(gold_frequencies[gtag], 2) - math.log(cgp, 2)) hg2p /= N hp2g /= N hg = 0 for gtag, c in gold_frequencies.items(): hg -= c * (math.log(c, 2) - math.log(N, 2)) hg /= N print 'H(P|G)', hg2p, 'H(G|P)', hp2g, 'VI', hg2p + hp2g, 'H(G)', hg #sys.exit(0) # find top tags gtags = gold_frequencies.items() gtags.sort(lambda x,y: x[1]-y[1]) gtags.reverse() #gtags = gtags[:50] print '%7s %7s' % ('pred', 'cnt'), for gtag, gcount in gtags: print '%7s' % gtag, print print '=' * 80 preds = predict_frequencies.items() preds.sort(lambda x,y: x[1]-y[1]) preds.reverse() for ptag, pcount in preds: print '%7s %7d' % (ptag, pcount), for gtag, gcount in gtags: print '%7d' % joint_frequencies.get((gtag, ptag), 0), print print '%7s %7d' % ('total', N), for gtag, gcount in gtags: print '%7d' % gcount, print if len(sys.argv) > 4: # needs Python Image Library (PIL) import Image, ImageDraw offset=10 image = Image.new("RGB", (len(preds), len(gtags)), (255, 255, 255)) #hsl(hue, saturation%, lightness%) # resort preds to get a better diagonal ptags = [] remaining = set(predict_frequencies.keys()) for y, (gtag, gcount) in enumerate(gtags): best = (None, 0) for ptag in remaining: #pcount = predict_frequencies[ptag] p = joint_frequencies.get((gtag, ptag), 0)# / float(pcount) if p > best[1]: best = (ptag, p) ptags.append(ptag) remaining.remove(ptag) if not remaining: break draw = ImageDraw.Draw(image) for x, ptag in enumerate(ptags): pcount = predict_frequencies[ptag] minval = math.log(offset) maxval = math.log(pcount + offset) for y, (gtag, gcount) in enumerate(gtags): f = math.log(offset + joint_frequencies.get((gtag, ptag), 0)) z = int(240. * (maxval - f) / float(maxval - minval)) #print x, y, z, f, maxval draw.point([(x,y)], fill='hsl(%d, 100%%, 50%%)' % z) del draw image.save(sys.argv[4])