#include "hg.h" #include "lazy.h" #include "fdict.h" #include "tdict.h" #include "lm/enumerate_vocab.hh" #include "lm/model.hh" #include "search/config.hh" #include "search/context.hh" #include "search/edge.hh" #include "search/edge_queue.hh" #include "search/vertex.hh" #include "search/vertex_generator.hh" #include "util/exception.hh" #include #include #include #include namespace { struct MapVocab : public lm::EnumerateVocab { public: MapVocab() {} // Do not call after Lookup. void Add(lm::WordIndex index, const StringPiece &str) { const WordID cdec_id = TD::Convert(str.as_string()); if (cdec_id >= out_.size()) out_.resize(cdec_id + 1); out_[cdec_id] = index; } // Assumes Add has been called and will never be called again. lm::WordIndex FromCDec(WordID id) const { return out_[out_.size() > id ? id : 0]; } private: std::vector out_; }; class LazyBase { public: LazyBase(const std::vector &weights) : cdec_weights_(weights), weights_(weights[FD::Convert("KLanguageModel")], weights[FD::Convert("KLanguageModel_OOV")], weights[FD::Convert("WordPenalty")]) { std::cerr << "Weights KLanguageModel " << weights_.LM() << " KLanguageModel_OOV " << weights_.OOV() << " WordPenalty " << weights_.WordPenalty() << std::endl; } virtual ~LazyBase() {} virtual void Search(unsigned int pop_limit, const Hypergraph &hg) const = 0; static LazyBase *Load(const char *model_file, const std::vector &weights); protected: lm::ngram::Config GetConfig() { lm::ngram::Config ret; ret.enumerate_vocab = &vocab_; return ret; } MapVocab vocab_; const std::vector &cdec_weights_; const search::Weights weights_; }; template class Lazy : public LazyBase { public: Lazy(const char *model_file, const std::vector &weights) : LazyBase(weights), m_(model_file, GetConfig()) {} void Search(unsigned int pop_limit, const Hypergraph &hg) const; private: unsigned char ConvertEdge(const search::Context &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::PartialEdge &out) const; const Model m_; }; LazyBase *LazyBase::Load(const char *model_file, const std::vector &weights) { lm::ngram::ModelType model_type; if (!lm::ngram::RecognizeBinary(model_file, model_type)) model_type = lm::ngram::PROBING; switch (model_type) { case lm::ngram::PROBING: return new Lazy(model_file, weights); case lm::ngram::REST_PROBING: return new Lazy(model_file, weights); default: UTIL_THROW(util::Exception, "Sorry this lm type isn't supported yet."); } } void PrintFinal(const Hypergraph &hg, const search::Final &final) { const std::vector &words = static_cast(final.GetNote().vp)->rule_->e(); boost::array::const_iterator child(final.Children().begin()); for (std::vector::const_iterator i = words.begin(); i != words.end(); ++i) { if (*i > 0) { std::cout << TD::Convert(*i) << ' '; } else { PrintFinal(hg, **child++); } } } template void Lazy::Search(unsigned int pop_limit, const Hypergraph &hg) const { boost::scoped_array out_vertices(new search::Vertex[hg.nodes_.size()]); search::Config config(weights_, pop_limit); search::Context context(config, m_); for (unsigned int i = 0; i < hg.nodes_.size() - 1; ++i) { search::EdgeQueue queue(context.PopLimit()); const Hypergraph::EdgesVector &down_edges = hg.nodes_[i].in_edges_; for (unsigned int j = 0; j < down_edges.size(); ++j) { unsigned int edge_index = down_edges[j]; unsigned char arity = ConvertEdge(context, i == hg.nodes_.size() - 2, out_vertices.get(), hg.edges_[edge_index], queue.InitializeEdge()); search::Note note; note.vp = &hg.edges_[edge_index]; if (arity != 255) queue.AddEdge(arity, note); } search::VertexGenerator vertex_gen(context, out_vertices[i]); queue.Search(context, vertex_gen); } const search::Final *top = out_vertices[hg.nodes_.size() - 2].BestChild(); if (!top) { std::cout << "NO PATH FOUND" << std::endl; } else { PrintFinal(hg, *top); std::cout << "||| " << top->Bound() << std::endl; } } template unsigned char Lazy::ConvertEdge(const search::Context &context, bool final, search::Vertex *vertices, const Hypergraph::Edge &in, search::PartialEdge &out) const { const std::vector &e = in.rule_->e(); std::vector words; unsigned int terminals = 0; unsigned char nt = 0; for (std::vector::const_iterator word = e.begin(); word != e.end(); ++word) { if (*word <= 0) { out.nt[nt] = vertices[in.tail_nodes_[-*word]].RootPartial(); if (out.nt[nt].Empty()) return 255; ++nt; words.push_back(lm::kMaxWordIndex); } else { ++terminals; words.push_back(vocab_.FromCDec(*word)); } } for (unsigned char fill = nt; fill < search::kMaxArity; ++fill) { out.nt[nt] = search::kBlankPartialVertex; } if (final) { words.push_back(m_.GetVocabulary().EndSentence()); } out.score = in.rule_->GetFeatureValues().dot(cdec_weights_); out.score -= static_cast(terminals) * context.GetWeights().WordPenalty() / M_LN10; out.score += search::ScoreRule(context, words, final, out.between); return nt; } boost::scoped_ptr AwfulGlobalLazy; } // namespace void PassToLazy(const char *model_file, const std::vector &weights, unsigned int pop_limit, const Hypergraph &hg) { if (!AwfulGlobalLazy.get()) { std::cerr << "Pop limit " << pop_limit << std::endl; AwfulGlobalLazy.reset(LazyBase::Load(model_file, weights)); } AwfulGlobalLazy->Search(pop_limit, hg); }