#include "hg.h" #include #include #include #include #include #include "viterbi.h" #include "inside_outside.h" #include "tdict.h" using namespace std; double Hypergraph::NumberOfPaths() const { return Inside(*this); } prob_t Hypergraph::ComputeEdgePosteriors(double scale, vector* posts) const { const ScaledEdgeProb weight(scale); SparseVector pv; const double inside = InsideOutside, EdgeFeaturesWeightFunction>(*this, &pv, weight); posts->resize(edges_.size()); for (int i = 0; i < edges_.size(); ++i) (*posts)[i] = prob_t(pv.value(i)); return prob_t(inside); } prob_t Hypergraph::ComputeBestPathThroughEdges(vector* post) const { vector in(edges_.size()); vector out(edges_.size()); post->resize(edges_.size()); vector ins_node_best(nodes_.size()); for (int i = 0; i < nodes_.size(); ++i) { const Node& node = nodes_[i]; prob_t& node_ins_best = ins_node_best[i]; if (node.in_edges_.empty()) node_ins_best = prob_t::One(); for (int j = 0; j < node.in_edges_.size(); ++j) { const Edge& edge = edges_[node.in_edges_[j]]; prob_t& in_edge_sco = in[node.in_edges_[j]]; in_edge_sco = edge.edge_prob_; for (int k = 0; k < edge.tail_nodes_.size(); ++k) in_edge_sco *= ins_node_best[edge.tail_nodes_[k]]; if (in_edge_sco > node_ins_best) node_ins_best = in_edge_sco; } } const prob_t ins_sco = ins_node_best[nodes_.size() - 1]; // sanity check int tots = 0; for (int i = 0; i < nodes_.size(); ++i) { if (nodes_[i].out_edges_.empty()) tots++; } assert(tots == 1); // compute outside scores, potentially using inside scores vector out_node_best(nodes_.size()); for (int i = nodes_.size() - 1; i >= 0; --i) { const Node& node = nodes_[i]; prob_t& node_out_best = out_node_best[node.id_]; if (node.out_edges_.empty()) node_out_best = prob_t::One(); for (int j = 0; j < node.out_edges_.size(); ++j) { const Edge& edge = edges_[node.out_edges_[j]]; prob_t sco = edge.edge_prob_ * out_node_best[edge.head_node_]; for (int k = 0; k < edge.tail_nodes_.size(); ++k) { if (edge.tail_nodes_[k] != i) sco *= ins_node_best[edge.tail_nodes_[k]]; } if (sco > node_out_best) node_out_best = sco; } for (int j = 0; j < node.in_edges_.size(); ++j) { out[node.in_edges_[j]] = node_out_best; } } for (int i = 0; i < in.size(); ++i) (*post)[i] = in[i] * out[i]; // for (int i = 0; i < in.size(); ++i) // cerr << "edge " << i << ": " << log((*post)[i]) << endl; return ins_sco; } void Hypergraph::PushWeightsToSource(double scale) { vector posts; ComputeEdgePosteriors(scale, &posts); for (int i = 0; i < nodes_.size(); ++i) { const Hypergraph::Node& node = nodes_[i]; prob_t z = prob_t::Zero(); for (int j = 0; j < node.out_edges_.size(); ++j) z += posts[node.out_edges_[j]]; for (int j = 0; j < node.out_edges_.size(); ++j) { edges_[node.out_edges_[j]].edge_prob_ = posts[node.out_edges_[j]] / z; } } } void Hypergraph::PushWeightsToGoal(double scale) { vector posts; ComputeEdgePosteriors(scale, &posts); for (int i = 0; i < nodes_.size(); ++i) { const Hypergraph::Node& node = nodes_[i]; prob_t z = prob_t::Zero(); for (int j = 0; j < node.in_edges_.size(); ++j) z += posts[node.in_edges_[j]]; for (int j = 0; j < node.in_edges_.size(); ++j) { edges_[node.in_edges_[j]].edge_prob_ = posts[node.in_edges_[j]] / z; } } } struct EdgeExistsWeightFunction { EdgeExistsWeightFunction(const std::vector& prunes) : prunes_(prunes) {} double operator()(const Hypergraph::Edge& edge) const { return (prunes_[edge.id_] ? 0.0 : 1.0); } private: const vector& prunes_; }; void Hypergraph::PruneEdges(const std::vector& prune_edge, bool run_inside_algorithm) { assert(prune_edge.size() == edges_.size()); vector filtered = prune_edge; if (run_inside_algorithm) { const EdgeExistsWeightFunction wf(prune_edge); // use double, not bool since vector causes problems with the Inside algorithm. // I don't know a good c++ way to resolve this short of template specialization which // I dislike. If you know of a better way that doesn't involve specialization, // fix this! vector reachable; bool goal_derivable = (0 < Inside(*this, &reachable, wf)); assert(reachable.size() == nodes_.size()); for (int i = 0; i < edges_.size(); ++i) { bool prune = prune_edge[i]; if (!prune) { const Edge& edge = edges_[i]; for (int j = 0; j < edge.tail_nodes_.size(); ++j) { if (!reachable[edge.tail_nodes_[j]]) { prune = true; break; } } } filtered[i] = prune; } } TopologicallySortNodesAndEdges(nodes_.size() - 1, &filtered); } void Hypergraph::DensityPruneInsideOutside(const double scale, const bool use_sum_prod_semiring, const double density, const vector* preserve_mask) { assert(density >= 1.0); const int plen = ViterbiPathLength(*this); vector bp; int rnum = min(static_cast(edges_.size()), static_cast(density * static_cast(plen))); if (rnum == edges_.size()) { cerr << "No pruning required: denisty already sufficient"; return; } vector io(edges_.size()); if (use_sum_prod_semiring) ComputeEdgePosteriors(scale, &io); else ComputeBestPathThroughEdges(&io); assert(edges_.size() == io.size()); vector sorted = io; nth_element(sorted.begin(), sorted.begin() + rnum, sorted.end(), greater()); const double cutoff = sorted[rnum]; vector prune(edges_.size()); for (int i = 0; i < edges_.size(); ++i) { prune[i] = (io[i] < cutoff); if (preserve_mask && (*preserve_mask)[i]) prune[i] = false; } PruneEdges(prune); } void Hypergraph::BeamPruneInsideOutside( const double scale, const bool use_sum_prod_semiring, const double alpha, const vector* preserve_mask) { assert(alpha > 0.0); assert(scale > 0.0); vector io(edges_.size()); if (use_sum_prod_semiring) ComputeEdgePosteriors(scale, &io); else ComputeBestPathThroughEdges(&io); assert(edges_.size() == io.size()); prob_t best; // initializes to zero for (int i = 0; i < io.size(); ++i) if (io[i] > best) best = io[i]; const prob_t aprob(exp(-alpha)); const prob_t cutoff = best * aprob; // cerr << "aprob = " << aprob << "\t CUTOFF=" << cutoff << endl; vector prune(edges_.size()); //cerr << preserve_mask.size() << " " << edges_.size() << endl; int pc = 0; for (int i = 0; i < io.size(); ++i) { const bool prune_edge = (io[i] < cutoff); if (prune_edge) ++pc; prune[i] = (io[i] < cutoff); if (preserve_mask && (*preserve_mask)[i]) prune[i] = false; } // cerr << "Beam pruning " << pc << "/" << io.size() << " edges\n"; PruneEdges(prune); } void Hypergraph::PrintGraphviz() const { int ei = 0; cerr << "digraph G {\n rankdir=LR;\n nodesep=.05;\n"; for (vector::const_iterator i = edges_.begin(); i != edges_.end(); ++i) { const Edge& edge=*i; ++ei; static const string none = ""; string rule = (edge.rule_ ? edge.rule_->AsString(false) : none); cerr << " A_" << ei << " [label=\"" << rule << " p=" << edge.edge_prob_ << " F:" << edge.feature_values_ << "\" shape=\"rect\"];\n"; Hypergraph::TailNodeVector indorder(edge.tail_nodes_.size(), 0); int ntc = 0; for (int i = 0; i < edge.rule_->e_.size(); ++i) { if (edge.rule_->e_[i] <= 0) indorder[ntc++] = 1 + (-1 * edge.rule_->e_[i]); } for (int i = 0; i < edge.tail_nodes_.size(); ++i) { cerr << " " << edge.tail_nodes_[i] << " -> A_" << ei; if (edge.tail_nodes_.size() > 1) { cerr << " [label=\"" << indorder[i] << "\"]"; } cerr << ";\n"; } cerr << " A_" << ei << " -> " << edge.head_node_ << ";\n"; } for (vector::const_iterator ni = nodes_.begin(); ni != nodes_.end(); ++ni) { cerr << " " << ni->id_ << "[label=\"" << (ni->cat_ < 0 ? TD::Convert(ni->cat_ * -1) : "") //cerr << " " << ni->id_ << "[label=\"" << ni->cat_ << " n=" << ni->id_ // << ",x=" << &*ni // << ",in=" << ni->in_edges_.size() // << ",out=" << ni->out_edges_.size() << "\"];\n"; } cerr << "}\n"; } void Hypergraph::Union(const Hypergraph& other) { if (&other == this) return; if (nodes_.empty()) { nodes_ = other.nodes_; edges_ = other.edges_; return; } int noff = nodes_.size(); int eoff = edges_.size(); int ogoal = other.nodes_.size() - 1; int cgoal = noff - 1; // keep a single goal node, so add nodes.size - 1 nodes_.resize(nodes_.size() + ogoal); // add all edges edges_.resize(edges_.size() + other.edges_.size()); for (int i = 0; i < ogoal; ++i) { const Node& on = other.nodes_[i]; Node& cn = nodes_[i + noff]; cn.id_ = i + noff; cn.in_edges_.resize(on.in_edges_.size()); for (int j = 0; j < on.in_edges_.size(); ++j) cn.in_edges_[j] = on.in_edges_[j] + eoff; cn.out_edges_.resize(on.out_edges_.size()); for (int j = 0; j < on.out_edges_.size(); ++j) cn.out_edges_[j] = on.out_edges_[j] + eoff; } for (int i = 0; i < other.edges_.size(); ++i) { const Edge& oe = other.edges_[i]; Edge& ce = edges_[i + eoff]; ce.id_ = i + eoff; ce.rule_ = oe.rule_; ce.feature_values_ = oe.feature_values_; if (oe.head_node_ == ogoal) { ce.head_node_ = cgoal; nodes_[cgoal].in_edges_.push_back(ce.id_); } else { ce.head_node_ = oe.head_node_ + noff; } ce.tail_nodes_.resize(oe.tail_nodes_.size()); for (int j = 0; j < oe.tail_nodes_.size(); ++j) ce.tail_nodes_[j] = oe.tail_nodes_[j] + noff; } TopologicallySortNodesAndEdges(cgoal); } int Hypergraph::MarkReachable(const Node& node, vector* rmap, const vector* prune_edges) const { int total = 0; if (!(*rmap)[node.id_]) { total = 1; (*rmap)[node.id_] = true; for (int i = 0; i < node.in_edges_.size(); ++i) { if (!(prune_edges && (*prune_edges)[node.in_edges_[i]])) { for (int j = 0; j < edges_[node.in_edges_[i]].tail_nodes_.size(); ++j) total += MarkReachable(nodes_[edges_[node.in_edges_[i]].tail_nodes_[j]], rmap, prune_edges); } } } return total; } void Hypergraph::PruneUnreachable(int goal_node_id) { TopologicallySortNodesAndEdges(goal_node_id, NULL); } void Hypergraph::RemoveNoncoaccessibleStates(int goal_node_id) { if (goal_node_id < 0) goal_node_id += nodes_.size(); assert(goal_node_id >= 0); assert(goal_node_id < nodes_.size()); // TODO finish implementation abort(); } void Hypergraph::TopologicallySortNodesAndEdges(int goal_index, const vector* prune_edges) { vector sedges(edges_.size()); // figure out which nodes are reachable from the goal vector reachable(nodes_.size(), false); int num_reachable = MarkReachable(nodes_[goal_index], &reachable, prune_edges); vector snodes(num_reachable); snodes.clear(); // enumerate all reachable nodes in topologically sorted order vector old_node_to_new_id(nodes_.size(), -1); vector node_to_incount(nodes_.size(), -1); vector node_processed(nodes_.size(), false); typedef map > PQueue; PQueue pri_q; for (int i = 0; i < nodes_.size(); ++i) { if (!reachable[i]) continue; const int inedges = nodes_[i].in_edges_.size(); int incount = inedges; for (int j = 0; j < inedges; ++j) if (edges_[nodes_[i].in_edges_[j]].tail_nodes_.size() == 0 || (prune_edges && (*prune_edges)[nodes_[i].in_edges_[j]])) --incount; // cerr << &nodes_[i] <<" : incount=" << incount << "\tout=" << nodes_[i].out_edges_.size() << "\t(in-edges=" << inedges << ")\n"; assert(node_to_incount[i] == -1); node_to_incount[i] = incount; pri_q[incount].insert(i); } int edge_count = 0; while (!pri_q.empty()) { PQueue::iterator iter = pri_q.find(0); assert(iter != pri_q.end()); assert(!iter->second.empty()); // get first node with incount = 0 const int cur_index = *iter->second.begin(); const Node& node = nodes_[cur_index]; assert(reachable[cur_index]); //cerr << "node: " << node << endl; const int new_node_index = snodes.size(); old_node_to_new_id[cur_index] = new_node_index; snodes.push_back(node); Node& new_node = snodes.back(); new_node.id_ = new_node_index; new_node.out_edges_.clear(); // fix up edges - we can now process the in edges and // the out edges of their tails int oi = 0; for (int i = 0; i < node.in_edges_.size(); ++i, ++oi) { if (prune_edges && (*prune_edges)[node.in_edges_[i]]) { --oi; continue; } new_node.in_edges_[oi] = edge_count; Edge& edge = sedges[edge_count]; edge.id_ = edge_count; ++edge_count; const Edge& old_edge = edges_[node.in_edges_[i]]; edge.rule_ = old_edge.rule_; edge.feature_values_ = old_edge.feature_values_; edge.head_node_ = new_node_index; edge.tail_nodes_.resize(old_edge.tail_nodes_.size()); edge.edge_prob_ = old_edge.edge_prob_; edge.i_ = old_edge.i_; edge.j_ = old_edge.j_; edge.prev_i_ = old_edge.prev_i_; edge.prev_j_ = old_edge.prev_j_; for (int j = 0; j < old_edge.tail_nodes_.size(); ++j) { const Node& old_tail_node = nodes_[old_edge.tail_nodes_[j]]; edge.tail_nodes_[j] = old_node_to_new_id[old_tail_node.id_]; snodes[edge.tail_nodes_[j]].out_edges_.push_back(edge_count-1); assert(edge.tail_nodes_[j] != new_node_index); } } assert(oi <= new_node.in_edges_.size()); new_node.in_edges_.resize(oi); for (int i = 0; i < node.out_edges_.size(); ++i) { const Edge& edge = edges_[node.out_edges_[i]]; const int next_index = edge.head_node_; assert(cur_index != next_index); if (!reachable[next_index]) continue; if (prune_edges && (*prune_edges)[edge.id_]) continue; bool dontReduce = false; for (int j = 0; j < edge.tail_nodes_.size() && !dontReduce; ++j) { int tail_index = edge.tail_nodes_[j]; dontReduce = (tail_index != cur_index) && !node_processed[tail_index]; } if (dontReduce) continue; const int incount = node_to_incount[next_index]; if (incount <= 0) { cerr << "incount = " << incount << ", should be > 0!\n"; cerr << "do you have a cycle in your hypergraph?\n"; abort(); } PQueue::iterator it = pri_q.find(incount); assert(it != pri_q.end()); it->second.erase(next_index); if (it->second.empty()) pri_q.erase(it); // reinsert node with reduced incount pri_q[incount-1].insert(next_index); --node_to_incount[next_index]; } // remove node from set iter->second.erase(cur_index); if (iter->second.empty()) pri_q.erase(iter); node_processed[cur_index] = true; } sedges.resize(edge_count); nodes_.swap(snodes); edges_.swap(sedges); assert(nodes_.back().out_edges_.size() == 0); } TRulePtr Hypergraph::kEPSRule; TRulePtr Hypergraph::kUnaryRule; void Hypergraph::EpsilonRemove(WordID eps) { if (!kEPSRule) { kEPSRule.reset(new TRule("[X] ||| ||| ")); kUnaryRule.reset(new TRule("[X] ||| [X,1] ||| [X,1]")); } vector kill(edges_.size(), false); for (int i = 0; i < edges_.size(); ++i) { const Edge& edge = edges_[i]; if (edge.tail_nodes_.empty() && edge.rule_->f_.size() == 1 && edge.rule_->f_[0] == eps) { kill[i] = true; if (!edge.feature_values_.empty()) { Node& node = nodes_[edge.head_node_]; if (node.in_edges_.size() != 1) { cerr << "[WARNING] edge with features going into non-empty node - can't promote\n"; // this *probably* means that there are multiple derivations of the // same sequence via different paths through the input forest // this needs to be investigated and fixed } else { for (int j = 0; j < node.out_edges_.size(); ++j) edges_[node.out_edges_[j]].feature_values_ += edge.feature_values_; // cerr << "PROMOTED " << edge.feature_values_ << endl; } } } } bool created_eps = false; PruneEdges(kill); for (int i = 0; i < nodes_.size(); ++i) { const Node& node = nodes_[i]; if (node.in_edges_.empty()) { for (int j = 0; j < node.out_edges_.size(); ++j) { Edge& edge = edges_[node.out_edges_[j]]; if (edge.rule_->Arity() == 2) { assert(edge.rule_->f_.size() == 2); assert(edge.rule_->e_.size() == 2); edge.rule_ = kUnaryRule; int cur = node.id_; int t = -1; assert(edge.tail_nodes_.size() == 2); for (int i = 0; i < 2; ++i) if (edge.tail_nodes_[i] != cur) { t = edge.tail_nodes_[i]; } assert(t != -1); edge.tail_nodes_.resize(1); edge.tail_nodes_[0] = t; } else { edge.rule_ = kEPSRule; edge.rule_->f_[0] = eps; edge.rule_->e_[0] = eps; edge.tail_nodes_.clear(); created_eps = true; } } } } vector k2(edges_.size(), false); PruneEdges(k2); if (created_eps) EpsilonRemove(eps); } struct EdgeWeightSorter { const Hypergraph& hg; EdgeWeightSorter(const Hypergraph& h) : hg(h) {} bool operator()(int a, int b) const { return hg.edges_[a].edge_prob_ > hg.edges_[b].edge_prob_; } }; void Hypergraph::SortInEdgesByEdgeWeights() { for (int i = 0; i < nodes_.size(); ++i) { Node& node = nodes_[i]; sort(node.in_edges_.begin(), node.in_edges_.end(), EdgeWeightSorter(*this)); } }