#include "ff_soft_syntax_mindist.h" #include #include #include #include #include #include "sentence_metadata.h" #include "stringlib.h" #include "array2d.h" #include "filelib.h" using namespace std; // Implements the soft syntactic features described in // Marton and Resnik (2008): "Soft Syntacitc Constraints for Hierarchical Phrase-Based Translation". // Source trees must be represented in Penn Treebank format, // e.g. (S (NP John) (VP (V left))). // // This variant accepts fuzzy matches, choosing the constituent with // minimum distance. struct SoftSyntaxFeaturesMindistImpl { SoftSyntaxFeaturesMindistImpl(const string& param) { vector labels = SplitOnWhitespace(param); //for (unsigned int i = 0; i < labels.size(); i++) { cerr << "Labels: " << labels.at(i) << endl; } for (unsigned int i = 0; i < labels.size(); i++) { string label = labels.at(i); pair feat_label; feat_label.first = label.substr(0, label.size() - 1); feat_label.second = label.at(label.size() - 1); feat_labels.push_back(feat_label); } } void InitializeGrids(const string& tree, unsigned src_len) { assert(tree.size() > 0); fids_ef.clear(); src_tree.clear(); fids_ef.resize(src_len, src_len + 1); src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); ParseTreeString(tree, src_len); } void ParseTreeString(const string& tree, unsigned src_len) { stack > stk; // first = i, second = category pair cur_cat; cur_cat.first = -1; unsigned i = 0; unsigned p = 0; //cerr << "String " << tree << endl; while(p < tree.size()) { const char cur = tree[p]; if (cur == '(') { stk.push(cur_cat); ++p; unsigned k = p + 1; while (k < tree.size() && tree[k] != ' ') { ++k; } cur_cat.first = i; cur_cat.second = TD::Convert(tree.substr(p, k - p)); //cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; p = k + 1; } else if (cur == ')') { unsigned k = p; while (k < tree.size() && tree[k] == ')') { ++k; } const unsigned num_closes = k - p; for (unsigned ci = 0; ci < num_closes; ++ci) { // cur_cat.second spans from cur_cat.first to i //cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl; // NOTE: unary rule chains end up being labeled with the top-most category src_tree(cur_cat.first, i) = cur_cat.second; cur_cat = stk.top(); stk.pop(); } p = k; while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } } else if (cur == ' ' || cur == '\t') { cerr << "Unexpected whitespace in: " << tree << endl; abort(); } else { // terminal symbol unsigned k = p + 1; do { while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; ++i; assert(i <= src_len); while (k < tree.size() && tree[k] == ' ') { ++k; } p = k; } while (p < tree.size() && tree[p] != ')'); } } //cerr << "i=" << i << " src_len=" << src_len << endl; assert(i == src_len); // make sure tree specified in src_tree is // the same length as the source sentence } WordID FireFeatures(const TRule& rule, const int i, const int j, const WordID* ants, SparseVector* feats) { //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; const WordID lhs = src_tree(i,j); string lhs_str = TD::Convert(lhs); //cerr << "LHS: " << lhs_str << " from " << i << " to " << j << endl; //cerr << "RULE :"<< rule << endl; int& fid_ef = fids_ef(i,j)[&rule]; string lhs_to_str = TD::Convert(lhs); int min_dist; string min_dist_label; if (lhs_to_str.compare("XX") != 0) { min_dist = 0; min_dist_label = lhs_to_str; } else { int ok = 0; for (unsigned int k = 1; k < (j - i); k++) { min_dist = k; for (unsigned int l = 0; l <= k; l++) { int l_add = i-l; int r_add = j+(k-l); if ((l_add < src_tree.width() && r_add < src_tree.height()) && (TD::Convert(src_tree(l_add, r_add)).compare("XX") != 0)) { ok = 1; min_dist_label = (TD::Convert(src_tree(l_add, r_add))); break; } else { int l_rem= i+l; int r_rem = j-(k-l); if ((l_rem < src_tree.width() && r_rem < src_tree.height()) && TD::Convert(src_tree(l_rem, r_rem)).compare("XX") != 0) { ok = 1; min_dist_label = (TD::Convert(src_tree(l_rem, r_rem))); break; } } } if (ok) break; } } //cerr << "SPAN: " << i << " " << j << endl; //cerr << "MINDIST: " << min_dist << endl; //cerr << "MINDISTLABEL: " << min_dist_label << endl; for (unsigned int i = 0; i < feat_labels.size(); i++) { ostringstream os; string label = feat_labels.at(i).first; //cerr << "This Label: " << label << endl; char feat_type = (char) feat_labels.at(i).second.c_str()[0]; //cerr << "feat_type: " << feat_type << endl; switch(feat_type) { case '2': if (min_dist_label.compare(label) == 0) { if (min_dist == 0) { os << "SYN:" << label << "_conform"; } else { os << "SYN:" << label << "_cross"; } fid_ef = FD::Convert(os.str()); //cerr << "Feature :" << os.str() << endl; feats->set_value(fid_ef, 1.0); } break; case '_': os << "SYN:" << label; fid_ef = FD::Convert(os.str()); if (min_dist_label.compare(label) == 0) { //cerr << "Feature: " << os.str() << endl; if (min_dist == 0) { feats->set_value(fid_ef, 1.0); } else { //cerr << "Feature: " << os.str() << endl; feats->set_value(fid_ef, -1.0); } } break; case '+': if (min_dist_label.compare(label) == 0) { os << "SYN:" << label << "_conform"; fid_ef = FD::Convert(os.str()); if (min_dist == 0) { //cerr << "Feature: " << os.str() << endl; feats->set_value(fid_ef, 1.0); } } break; case '-': //cerr << "-" << endl; if (min_dist_label.compare(label) != 0) { os << "SYN:" << label << "_cross"; fid_ef = FD::Convert(os.str()); if (min_dist > 0) { //cerr << "Feature :" << os.str() << endl; feats->set_value(fid_ef, 1.0); } } break; os.clear(); os.str(""); } //cerr << "FEATURE: " << os.str() << endl; //cerr << endl; } return lhs; } Array2D src_tree; // src_tree(i,j) NT = type mutable Array2D > fids_ef; // fires for fully lexicalized vector > feat_labels; }; SoftSyntaxFeaturesMindist::SoftSyntaxFeaturesMindist(const string& param) : FeatureFunction(sizeof(WordID)) { impl = new SoftSyntaxFeaturesMindistImpl(param); } SoftSyntaxFeaturesMindist::~SoftSyntaxFeaturesMindist() { delete impl; impl = NULL; } void SoftSyntaxFeaturesMindist::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector& ant_contexts, SparseVector* features, SparseVector* estimated_features, void* context) const { WordID ants[8]; for (unsigned i = 0; i < ant_contexts.size(); ++i) ants[i] = *static_cast(ant_contexts[i]); *static_cast(context) = impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); } void SoftSyntaxFeaturesMindist::PrepareForInput(const SentenceMetadata& smeta) { impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); }