#include "ff_parse_match.h" #include #include #include #include "sentence_metadata.h" #include "array2d.h" #include "filelib.h" using namespace std; // implements the parse match features as described in Vilar et al. (2008) // source trees must be represented in Penn Treebank format, e.g. // (S (NP John) (VP (V left))) struct ParseMatchFeaturesImpl { ParseMatchFeaturesImpl(const string& param) { if (param.compare("") != 0) { char score_param = (char) param[0]; switch(score_param) { case 'b': scoring_method = 0; break; case 'l': scoring_method = 1; break; case 'e': scoring_method = 2; break; case 'r': scoring_method = 3; break; default: scoring_method = 0; } } else { scoring_method = 0; } } void InitializeGrids(const string& tree, unsigned src_len) { assert(tree.size() > 0); //fids_cat.clear(); fids_ef.clear(); src_tree.clear(); //fids_cat.resize(src_len, src_len + 1); fids_ef.resize(src_len, src_len + 1); src_tree.resize(src_len, src_len + 1, TD::Convert("XX")); ParseTreeString(tree, src_len); } void ParseTreeString(const string& tree, unsigned src_len) { //cerr << "TREE: " << tree << endl; src_sent_len = src_len; stack > stk; // first = i, second = category pair cur_cat; cur_cat.first = -1; unsigned i = 0; unsigned p = 0; while(p < tree.size()) { const char cur = tree[p]; if (cur == '(') { stk.push(cur_cat); ++p; unsigned k = p + 1; while (k < tree.size() && tree[k] != ' ') { ++k; } cur_cat.first = i; cur_cat.second = TD::Convert(tree.substr(p, k - p)); // cerr << "NT: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; p = k + 1; } else if (cur == ')') { unsigned k = p; while (k < tree.size() && tree[k] == ')') { ++k; } const unsigned num_closes = k - p; for (unsigned ci = 0; ci < num_closes; ++ci) { // cur_cat.second spans from cur_cat.first to i // cerr << TD::Convert(cur_cat.second) << " from " << cur_cat.first << " to " << i << endl; // NOTE: unary rule chains end up being labeled with the top-most category src_tree(cur_cat.first, i) = cur_cat.second; cur_cat = stk.top(); stk.pop(); } p = k; while (p < tree.size() && (tree[p] == ' ' || tree[p] == '\t')) { ++p; } } else if (cur == ' ' || cur == '\t') { cerr << "Unexpected whitespace in: " << tree << endl; abort(); } else { // terminal symbol unsigned k = p + 1; do { while (k < tree.size() && tree[k] != ')' && tree[k] != ' ') { ++k; } // cerr << "TERM: '" << tree.substr(p, k-p) << "' (i=" << i << ")\n"; ++i; assert(i <= src_len); while (k < tree.size() && tree[k] == ' ') { ++k; } p = k; } while (p < tree.size() && tree[p] != ')'); } //cerr << "i=" << i << " src_len=" << src_len << endl; } //cerr << "i=" << i << " src_len=" << src_len << endl; assert(i == src_len); // make sure tree specified in src_tree is // the same length as the source sentence } int FireFeatures(const TRule& rule, const int i, const int j, int* ants, SparseVector* feats) { //cerr << "fire features: " << rule.AsString() << " for " << i << "," << j << endl; //cerr << rule << endl; //cerr << "span: " << i << " " << j << endl; const WordID lhs = src_tree(i,j); int fid_ef = FD::Convert("PM"); int min_dist; // minimal distance to next syntactic constituent of this rule's LHS int summed_min_dists; // minimal distances of LHS and NTs summed up if (TD::Convert(lhs).compare("XX") != 0) min_dist= 0; // compute the distance to the next syntactical constituent else { int ok = 0; for (unsigned int k = 1; k < (j - i); k++) { min_dist = k; for (unsigned int l = 0; l <= k; l++) { // check if adding k words to the rule span will // lead to a syntactical constituent int l_add = i-l; int r_add = j+(k-l); //cerr << "Adding: " << l_add << " " << r_add << endl; if ((l_add < src_tree.width() && r_add < src_tree.height()) && (TD::Convert(src_tree(l_add, r_add)).compare("XX") != 0)) { //cerr << TD::Convert(src_tree(i-l,j+(k-l))) << endl; //cerr << "span_add: " << l_add << " " << r_add << endl; ok = 1; break; } // check if removing k words from the rule span will // lead to a syntactical constituent else { //cerr << "Hilfe...!" << endl; int l_rem= i+l; int r_rem = j-(k-l); //cerr << "Removing: " << l_rem << " " << r_rem << endl; if ((l_rem < src_tree.width() && r_rem < src_tree.height()) && TD::Convert(src_tree(l_rem, r_rem)).compare("XX") != 0) { //cerr << TD::Convert(src_tree(i+l,j-(k-l))) << endl; //cerr << "span_rem: " << l_rem << " " << r_rem << endl; ok = 1; break; } } } if (ok) break; } } summed_min_dists = min_dist; //cerr << min_dist << endl; unsigned ntc = 0; for (unsigned k = 0; k < rule.f_.size(); ++k) { int fj = rule.f_[k]; if (fj <= 0) summed_min_dists += ants[ntc++]; } switch(scoring_method) { case 0: // binary scoring feats->set_value(fid_ef, (summed_min_dists == 0)); break; // CHECK: for the remaining scoring methods, the question remains if // min_dist or summed_min_dists should be used case 1: // linear scoring feats->set_value(fid_ef, 1.0/(min_dist+1)); break; case 2: // exponential scoring feats->set_value(fid_ef, 1.0/exp(min_dist)); break; case 3: // relative scoring feats->set_value(fid_ef, (j-i)/((j-i) + min_dist)); break; default: // binary scoring in case nothing is defined feats->set_value(fid_ef, (summed_min_dists == 0)); } return min_dist; } Array2D src_tree; // src_tree(i,j) NT = type unsigned int src_sent_len; mutable Array2D > fids_ef; // fires for fully lexicalized int scoring_method; }; ParseMatchFeatures::ParseMatchFeatures(const string& param) : FeatureFunction(sizeof(WordID)) { impl = new ParseMatchFeaturesImpl(param); } ParseMatchFeatures::~ParseMatchFeatures() { delete impl; impl = NULL; } void ParseMatchFeatures::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const vector& ant_contexts, SparseVector* features, SparseVector* estimated_features, void* context) const { int ants[8]; for (unsigned i = 0; i < ant_contexts.size(); ++i) ants[i] = *static_cast(ant_contexts[i]); *static_cast(context) = impl->FireFeatures(*edge.rule_, edge.i_, edge.j_, ants, features); } void ParseMatchFeatures::PrepareForInput(const SentenceMetadata& smeta) { impl->InitializeGrids(smeta.GetSGMLValue("src_tree"), smeta.GetSourceLength()); }