#ifndef _FF_H_ #define _FF_H_ #include #include "fdict.h" #include "hg.h" class SentenceMetadata; class FeatureFunction; // see definition below // if you want to develop a new feature, inherit from this class and // override TraversalFeaturesImpl(...). If it's a feature that returns / // depends on context, you may also need to implement // FinalTraversalFeatures(...) class FeatureFunction { public: FeatureFunction() : state_size_() {} explicit FeatureFunction(int state_size) : state_size_(state_size) {} virtual ~FeatureFunction(); // returns the number of bytes of context that this feature function will // (maximally) use. By default, 0 ("stateless" models in Hiero/Joshua). // NOTE: this value is fixed for the instance of your class, you cannot // use different amounts of memory for different nodes in the forest. inline int NumBytesContext() const { return state_size_; } // Compute the feature values and (if this applies) the estimates of the // feature values when this edge is used incorporated into a larger context inline void TraversalFeatures(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector& ant_contexts, SparseVector* features, SparseVector* estimated_features, void* out_state) const { TraversalFeaturesImpl(smeta, edge, ant_contexts, features, estimated_features, out_state); // TODO it's easy for careless feature function developers to overwrite // the end of their state and clobber someone else's memory. These bugs // will be horrendously painful to track down. There should be some // optional strict mode that's enforced here that adds some kind of // barrier between the blocks reserved for the residual contexts } // if there's some state left when you transition to the goal state, score // it here. For example, the language model computes the cost of adding // and . virtual void FinalTraversalFeatures(const void* residual_state, SparseVector* final_features) const; protected: // context is a pointer to a buffer of size NumBytesContext() that the // feature function can write its state to. It's up to the feature function // to determine how much space it needs and to determine how to encode its // residual contextual information since it is OPAQUE to all clients outside // of the particular FeatureFunction class. There is one exception: // equality of the contents (i.e., memcmp) is required to determine whether // two states can be combined. virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector& ant_contexts, SparseVector* features, SparseVector* estimated_features, void* context) const = 0; // !!! ONLY call this from subclass *CONSTRUCTORS* !!! void SetStateSize(size_t state_size) { state_size_ = state_size; } private: int state_size_; }; // word penalty feature, for each word on the E side of a rule, // add value_ class WordPenalty : public FeatureFunction { public: WordPenalty(const std::string& param); protected: virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector& ant_contexts, SparseVector* features, SparseVector* estimated_features, void* context) const; private: const int fid_; const double value_; }; class SourceWordPenalty : public FeatureFunction { public: SourceWordPenalty(const std::string& param); protected: virtual void TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector& ant_contexts, SparseVector* features, SparseVector* estimated_features, void* context) const; private: const int fid_; const double value_; }; // this class is a set of FeatureFunctions that can be used to score, rescore, // etc. a (translation?) forest class ModelSet { public: ModelSet() : state_size_(0) {} ModelSet(const std::vector& weights, const std::vector& models); // sets edge->feature_values_ and edge->edge_prob_ // NOTE: edge must not necessarily be in hg.edges_ but its TAIL nodes // must be. void AddFeaturesToEdge(const SentenceMetadata& smeta, const Hypergraph& hg, Hypergraph::Edge* edge, std::string* residual_context, prob_t* combination_cost_estimate = NULL) const; void AddFinalFeatures(const std::string& residual_context, Hypergraph::Edge* edge) const; bool empty() const { return models_.empty(); } private: std::vector models_; std::vector weights_; int state_size_; std::vector model_state_pos_; }; #endif