//TODO: non-sparse vector for all feature functions? modelset applymodels keeps track of who has what features? it's nice having FF that could generate a handful out of 10000 possible feats, though. //TODO: actually score rule_feature()==true features once only, hash keyed on rule or modify TRule directly? need to keep clear in forest which features come from models vs. rules; then rescoring could drop all the old models features at once #include "fast_lexical_cast.hpp" #include #include "ff.h" #include "tdict.h" #include "hg.h" using namespace std; FeatureFunction::~FeatureFunction() {} void FeatureFunction::PrepareForInput(const SentenceMetadata&) {} void FeatureFunction::FinalTraversalFeatures(const void* /* ant_state */, SparseVector* /* features */) const { } string FeatureFunction::usage_helper(std::string const& name,std::string const& params,std::string const& details,bool sp,bool sd) { string r=name; if (sp) { r+=": "; r+=params; } if (sd) { r+="\n"; r+=details; } return r; } Features FeatureFunction::single_feature(WordID feat) { return Features(1,feat); } Features ModelSet::all_features(std::ostream *warn,bool warn0) { //return ::all_features(models_,weights_,warn,warn0); } void show_features(Features const& ffs,DenseWeightVector const& weights_,std::ostream &out,std::ostream &warn,bool warn_zero_wt) { out << "Weight Feature\n"; for (unsigned i=0;i& ant_states, SparseVector* features, SparseVector* estimated_features, void* state) const { throw std::runtime_error("TraversalFeaturesImpl not implemented - override it or TraversalFeaturesLog.\n"); abort(); } void WordPenalty::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector& ant_states, SparseVector* features, SparseVector* estimated_features, void* state) const { (void) smeta; (void) ant_states; (void) state; (void) estimated_features; features->set_value(fid_, edge.rule_->EWords() * value_); } SourceWordPenalty::SourceWordPenalty(const string& param) : fid_(FD::Convert("SourceWordPenalty")), value_(-1.0 / log(10)) { if (!param.empty()) { cerr << "Warning SourceWordPenalty ignoring parameter: " << param << endl; } } Features SourceWordPenalty::features() const { return single_feature(fid_); } Features WordPenalty::features() const { return single_feature(fid_); } void SourceWordPenalty::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector& ant_states, SparseVector* features, SparseVector* estimated_features, void* state) const { (void) smeta; (void) ant_states; (void) state; (void) estimated_features; features->set_value(fid_, edge.rule_->FWords() * value_); } ArityPenalty::ArityPenalty(const std::string& param) : value_(-1.0 / log(10)) { string fname = "Arity_"; unsigned MAX=DEFAULT_MAX_ARITY; using namespace boost; if (!param.empty()) MAX=lexical_cast(param); for (unsigned i = 0; i <= MAX; ++i) { WordID fid=FD::Convert(fname+lexical_cast(i)); fids_.push_back(fid); } while (!fids_.empty() && fids_.back()==0) fids_.pop_back(); // pretty up features vector in case FD was frozen. doesn't change anything } Features ArityPenalty::features() const { return Features(fids_.begin(),fids_.end()); } void ArityPenalty::TraversalFeaturesImpl(const SentenceMetadata& smeta, const Hypergraph::Edge& edge, const std::vector& ant_states, SparseVector* features, SparseVector* estimated_features, void* state) const { (void) smeta; (void) ant_states; (void) state; (void) estimated_features; unsigned a=edge.Arity(); features->set_value(a& w, const vector& models) : models_(models), weights_(w), state_size_(0), model_state_pos_(models.size()) { for (int i = 0; i < models_.size(); ++i) { model_state_pos_[i] = state_size_; state_size_ += models_[i]->NumBytesContext(); } } void ModelSet::PrepareForInput(const SentenceMetadata& smeta) { for (int i = 0; i < models_.size(); ++i) const_cast(models_[i])->PrepareForInput(smeta); } void ModelSet::AddFeaturesToEdge(const SentenceMetadata& smeta, const Hypergraph& /* hg */, const FFStates& node_states, Hypergraph::Edge* edge, FFState* context, prob_t* combination_cost_estimate) const { //edge->reset_info(); context->resize(state_size_); if (state_size_ > 0) { memset(&(*context)[0], 0, state_size_); } SparseVector est_vals; // only computed if combination_cost_estimate is non-NULL if (combination_cost_estimate) *combination_cost_estimate = prob_t::One(); for (int i = 0; i < models_.size(); ++i) { const FeatureFunction& ff = *models_[i]; void* cur_ff_context = NULL; vector ants(edge->tail_nodes_.size()); bool has_context = ff.NumBytesContext() > 0; if (has_context) { int spos = model_state_pos_[i]; cur_ff_context = &(*context)[spos]; for (int i = 0; i < ants.size(); ++i) { ants[i] = &node_states[edge->tail_nodes_[i]][spos]; } } ff.TraversalFeatures(smeta, *edge, ants, &edge->feature_values_, &est_vals, cur_ff_context); } if (combination_cost_estimate) combination_cost_estimate->logeq(est_vals.dot(weights_)); edge->edge_prob_.logeq(edge->feature_values_.dot(weights_)); } void ModelSet::AddFinalFeatures(const FFState& state, Hypergraph::Edge* edge,SentenceMetadata const& smeta) const { assert(1 == edge->rule_->Arity()); //edge->reset_info(); for (int i = 0; i < models_.size(); ++i) { const FeatureFunction& ff = *models_[i]; const void* ant_state = NULL; bool has_context = ff.NumBytesContext() > 0; if (has_context) { int spos = model_state_pos_[i]; ant_state = &state[spos]; } ff.FinalTraversalFeatures(smeta, *edge, ant_state, &edge->feature_values_); } edge->edge_prob_.logeq(edge->feature_values_.dot(weights_)); }