From 68a3c1423c4c602a27b0211cf6b0c217135548d3 Mon Sep 17 00:00:00 2001 From: redpony Date: Fri, 15 Oct 2010 20:13:01 +0000 Subject: new multi-epoch online optimizer git-svn-id: https://ws10smt.googlecode.com/svn/trunk@675 ec762483-ff6d-05da-a07a-a48fb63a330f --- training/mpi_batch_optimize.cc | 78 +++++++++++++-- training/mpi_online_optimize.cc | 209 +++++++++++++++++++++------------------- training/online_optimizer.cc | 2 + training/online_optimizer.h | 3 + 4 files changed, 185 insertions(+), 107 deletions(-) (limited to 'training') diff --git a/training/mpi_batch_optimize.cc b/training/mpi_batch_optimize.cc index 7953513e..f1ee9fb4 100644 --- a/training/mpi_batch_optimize.cc +++ b/training/mpi_batch_optimize.cc @@ -1,6 +1,5 @@ #include #include -#include #include #include #include @@ -61,6 +60,7 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { ("input_weights,w",po::value(),"Input feature weights file") ("training_data,t",po::value(),"Training data") ("decoder_config,d",po::value(),"Decoder configuration file") + ("sharded_input,s",po::value(), "Corpus and grammar files are 'sharded' so each processor loads its own input and grammar file. Argument is the directory containing the shards.") ("output_weights,o",po::value()->default_value("-"),"Output feature weights file") ("optimization_method,m", po::value()->default_value("lbfgs"), "Optimization method (sgd, lbfgs, rprop)") ("correction_buffers,M", po::value()->default_value(10), "Number of gradients for LBFGS to maintain in memory") @@ -82,11 +82,16 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { } po::notify(*conf); - if (conf->count("help") || !conf->count("input_weights") || !conf->count("training_data") || !conf->count("decoder_config")) { + if (conf->count("help") || !conf->count("input_weights") || !(conf->count("training_data") | conf->count("sharded_input")) || !conf->count("decoder_config")) { cerr << dcmdline_options << endl; MPI::Finalize(); exit(1); } + if (conf->count("training_data") && conf->count("sharded_input")) { + cerr << "Cannot specify both --training_data and --sharded_input\n"; + MPI::Finalize(); + exit(1); + } } void ReadTrainingCorpus(const string& fname, int rank, int size, vector* c) { @@ -183,32 +188,79 @@ struct TrainingObserver : public DecoderObserver { int state; }; +void ReadConfig(const string& ini, vector* out) { + ReadFile rf(ini); + istream& in = *rf.stream(); + while(in) { + string line; + getline(in, line); + if (!in) continue; + out->push_back(line); + } +} + +void StoreConfig(const vector& cfg, istringstream* o) { + ostringstream os; + for (int i = 0; i < cfg.size(); ++i) { os << cfg[i] << endl; } + o->str(os.str()); +} + int main(int argc, char** argv) { MPI::Init(argc, argv); const int size = MPI::COMM_WORLD.Get_size(); const int rank = MPI::COMM_WORLD.Get_rank(); SetSilent(true); // turn off verbose decoder output - cerr << "MPI: I am " << rank << '/' << size << endl; register_feature_functions(); po::variables_map conf; InitCommandLine(argc, argv, &conf); + string shard_dir; + if (conf.count("sharded_input")) { + shard_dir = conf["sharded_input"].as(); + if (!DirectoryExists(shard_dir)) { + if (rank == 0) cerr << "Can't find shard directory: " << shard_dir << endl; + MPI::Finalize(); + return 1; + } + if (rank == 0) + cerr << "Shard directory: " << shard_dir << endl; + } + // load initial weights Weights weights; + if (rank == 0) { cerr << "Loading weights...\n"; } weights.InitFromFile(conf["input_weights"].as()); + if (rank == 0) { cerr << "Done loading weights.\n"; } // freeze feature set (should be optional?) const bool freeze_feature_set = true; if (freeze_feature_set) FD::Freeze(); // load cdec.ini and set up decoder - ReadFile ini_rf(conf["decoder_config"].as()); - Decoder decoder(ini_rf.stream()); - if (decoder.GetConf()["input"].as() != "-") { + vector cdec_ini; + ReadConfig(conf["decoder_config"].as(), &cdec_ini); + if (shard_dir.size()) { + if (rank == 0) { + for (int i = 0; i < cdec_ini.size(); ++i) { + if (cdec_ini[i].find("grammar=") == 0) { + cerr << "!!! using sharded input and " << conf["decoder_config"].as() << " contains a grammar specification:\n" << cdec_ini[i] << "\n VERIFY THAT THIS IS CORRECT!\n"; + } + } + } + ostringstream g; + g << "grammar=" << shard_dir << "/grammar." << rank << "_of_" << size << ".gz"; + cdec_ini.push_back(g.str()); + } + istringstream ini; + StoreConfig(cdec_ini, &ini); + if (rank == 0) cerr << "Loading grammar...\n"; + Decoder* decoder = new Decoder(&ini); + if (decoder->GetConf()["input"].as() != "-") { cerr << "cdec.ini must not set an input file\n"; MPI::COMM_WORLD.Abort(1); } + if (rank == 0) cerr << "Done loading grammar!\n"; const int num_feats = FD::NumFeats(); if (rank == 0) cerr << "Number of features: " << num_feats << endl; @@ -247,8 +299,16 @@ int main(int argc, char** argv) { vector gradient(num_feats, 0.0); vector rcv_grad(num_feats, 0.0); bool converged = false; + vector corpus; - ReadTrainingCorpus(conf["training_data"].as(), rank, size, &corpus); + if (shard_dir.size()) { + ostringstream os; os << shard_dir << "/corpus." << rank << "_of_" << size; + ReadTrainingCorpus(os.str(), 0, 1, &corpus); + cerr << os.str() << " has " << corpus.size() << " training examples. " << endl; + if (corpus.size() > 500) { corpus.resize(500); cerr << " TRUNCATING\n"; } + } else { + ReadTrainingCorpus(conf["training_data"].as(), rank, size, &corpus); + } assert(corpus.size() > 0); TrainingObserver observer; @@ -257,9 +317,9 @@ int main(int argc, char** argv) { if (rank == 0) { cerr << "Starting decoding... (~" << corpus.size() << " sentences / proc)\n"; } - decoder.SetWeights(lambdas); + decoder->SetWeights(lambdas); for (int i = 0; i < corpus.size(); ++i) - decoder.Decode(corpus[i], &observer); + decoder->Decode(corpus[i], &observer); fill(gradient.begin(), gradient.end(), 0); fill(rcv_grad.begin(), rcv_grad.end(), 0); diff --git a/training/mpi_online_optimize.cc b/training/mpi_online_optimize.cc index 509fbf15..4c08b181 100644 --- a/training/mpi_online_optimize.cc +++ b/training/mpi_online_optimize.cc @@ -6,6 +6,7 @@ #include #include +#include #include #include #include @@ -61,13 +62,9 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { opts.add_options() ("input_weights,w",po::value(),"Input feature weights file") ("training_data,t",po::value(),"Training data corpus") - ("decoder_config,c",po::value(),"Decoder configuration file") - ("output_weights,o",po::value()->default_value("-"),"Output feature weights file") - ("maximum_iteration,i", po::value(), "Maximum number of iterations") + ("training_agenda,a",po::value(), "Text file listing a series of configuration files and the number of iterations to train using each configuration successively") ("minibatch_size_per_proc,s", po::value()->default_value(5), "Number of training instances evaluated per processor in each minibatch") - ("freeze_feature_set,Z", "The feature set specified in the initial weights file is frozen throughout the duration of training") ("optimization_method,m", po::value()->default_value("sgd"), "Optimization method (sgd)") - ("fully_random,r", "Fully random draws from the training corpus") ("random_seed,S", po::value(), "Random seed (if not specified, /dev/random will be used)") ("eta_0,e", po::value()->default_value(0.2), "Initial learning rate for SGD (eta_0)") ("L1,1","Use L1 regularization") @@ -87,21 +84,26 @@ bool InitCommandLine(int argc, char** argv, po::variables_map* conf) { } po::notify(*conf); - if (conf->count("help") || !conf->count("training_data") || !conf->count("decoder_config")) { + if (conf->count("help") || !conf->count("training_data") || !conf->count("training_agenda")) { cerr << dcmdline_options << endl; return false; } return true; } -void ReadTrainingCorpus(const string& fname, vector* c) { +void ReadTrainingCorpus(const string& fname, int rank, int size, vector* c, vector* order) { ReadFile rf(fname); istream& in = *rf.stream(); string line; + int id = 0; while(in) { getline(in, line); if (!in) break; - c->push_back(line); + if (id % size == rank) { + c->push_back(line); + order->push_back(id); + } + ++id; } } @@ -192,15 +194,6 @@ struct TrainingObserver : public DecoderObserver { int state; }; -template -inline void Shuffle(vector* c, MT19937* rng) { - unsigned size = c->size(); - for (unsigned i = size - 1; i > 0; --i) { - const unsigned j = static_cast(rng->next() * i); - swap((*c)[j], (*c)[i]); - } -} - namespace mpi = boost::mpi; namespace boost { namespace mpi { @@ -209,6 +202,32 @@ namespace boost { namespace mpi { : mpl::true_ { }; } } // end namespace boost::mpi +bool LoadAgenda(const string& file, vector >* a) { + ReadFile rf(file); + istream& in = *rf.stream(); + string line; + while(in) { + getline(in, line); + if (!in) break; + if (line.empty()) continue; + if (line[0] == '#') continue; + int sc = 0; + if (line.size() < 3) return false; + for (int i = 0; i < line.size(); ++i) { if (line[i] == ' ') ++sc; } + if (sc != 1) { cerr << "Too many spaces in line: " << line << endl; return false; } + size_t d = line.find(" "); + pair x; + x.first = line.substr(0,d); + x.second = atoi(line.substr(d+1).c_str()); + a->push_back(x); + cerr << "X: " << x.second << " - " << x.first << "'\n"; + if (!FileExists(x.first)) { + cerr << "Can't find file " << x.first << endl; + return false; + } + } + return true; +} int main(int argc, char** argv) { mpi::environment env(argc, argv); @@ -228,36 +247,22 @@ int main(int argc, char** argv) { if (conf.count("input_weights")) weights.InitFromFile(conf["input_weights"].as()); - // freeze feature set - const bool freeze_feature_set = conf.count("freeze_feature_set"); - if (freeze_feature_set) FD::Freeze(); - - // load cdec.ini and set up decoder - ReadFile ini_rf(conf["decoder_config"].as()); - Decoder decoder(ini_rf.stream()); - if (decoder.GetConf()["input"].as() != "-") { - cerr << "cdec.ini must not set an input file\n"; - abort(); - } - vector corpus; - ReadTrainingCorpus(conf["training_data"].as(), &corpus); + vector ids; + ReadTrainingCorpus(conf["training_data"].as(), rank, size, &corpus, &ids); assert(corpus.size() > 0); std::tr1::shared_ptr o; std::tr1::shared_ptr lr; - vector order(corpus.size()); - const bool fully_random = conf.count("fully_random"); const unsigned size_per_proc = conf["minibatch_size_per_proc"].as(); - const unsigned batch_size = size_per_proc * size; - if (rank == 0) { - cerr << "Corpus: " << corpus.size() << " batch size: " << batch_size << endl; - if (batch_size > corpus.size()) { - cerr << " Reduce minibatch_size_per_proc!"; - abort(); - } + if (size_per_proc > corpus.size()) { + cerr << "Minibatch size must be smaller than corpus size!\n"; + return 1; + } + if (rank == 0) { + const unsigned batch_size = size_per_proc * size; // TODO config lr.reset(new ExponentialDecayLearningRate(batch_size, conf["eta_0"].as())); @@ -268,75 +273,83 @@ int main(int argc, char** argv) { } else { assert(!"fail"); } - - for (unsigned i = 0; i < order.size(); ++i) order[i]=i; - // randomize corpus - if (conf.count("random_seed")) - rng.reset(new MT19937(conf["random_seed"].as())); - else - rng.reset(new MT19937); } + if (conf.count("random_seed")) + rng.reset(new MT19937(conf["random_seed"].as())); + else + rng.reset(new MT19937); + SparseVector x; weights.InitSparseVector(&x); - int miter = corpus.size(); // hack to cause initial broadcast of order info TrainingObserver observer; - double objective = 0; - bool converged = false; int write_weights_every_ith = 100; // TODO configure - int iter = -1; + int titer = -1; + + vector > agenda; + if (!LoadAgenda(conf["training_agenda"].as(), &agenda)) + return 1; + if (rank == 0) + cerr << "Loaded agenda defining " << agenda.size() << " training epochs\n"; + vector lambdas; - while (!converged) { - weights.InitFromVector(x); - weights.InitVector(&lambdas); - ++miter; ++iter; - observer.Reset(); - decoder.SetWeights(lambdas); - if (rank == 0) { - if (conf.count("maximum_iteration")) { - if (iter == conf["maximum_iteration"].as()) - converged = true; - } - SanityCheck(lambdas); - ShowLargestFeatures(lambdas); - string fname = "weights.cur.gz"; - if (converged) { fname = "weights.final.gz"; } - if (iter % write_weights_every_ith == 0) { - ostringstream o; o << "weights." << iter << ".gz"; - fname = o.str(); + for (int ai = 0; ai < agenda.size(); ++ai) { + const string& cur_config = agenda[ai].first; + const unsigned max_iteration = agenda[ai].second; + if (rank == 0) + cerr << "STARTING TRAINING EPOCH " << (ai+1) << ". CONFIG=" << cur_config << endl; + // load cdec.ini and set up decoder + ReadFile ini_rf(cur_config); + Decoder decoder(ini_rf.stream()); + + o->ResetEpoch(); // resets the learning rate-- TODO is this good? + + int iter = -1; + bool converged = false; + while (!converged) { + mpi::timer timer; + weights.InitFromVector(x); + weights.InitVector(&lambdas); + ++iter; ++titer; + observer.Reset(); + decoder.SetWeights(lambdas); + if (rank == 0) { + converged = (iter == max_iteration); + SanityCheck(lambdas); + ShowLargestFeatures(lambdas); + string fname = "weights.cur.gz"; + if (iter % write_weights_every_ith == 0) { + ostringstream o; o << "weights.epoch_" << (ai+1) << '.' << iter << ".gz"; + fname = o.str(); + } + if (converged && ((ai+1)==agenda.size())) { fname = "weights.final.gz"; } + ostringstream vv; + vv << "total iter=" << titer << " (of current config iter=" << iter << ") minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (titer * size * size_per_proc / static_cast(corpus.size())) << " eta=" << lr->eta(titer); + const string svv = vv.str(); + cerr << svv << endl; + weights.WriteToFile(fname, true, &svv); } - ostringstream vv; - vv << "Objective = " << objective; // << " (eval count=" << o->EvaluationCount() << ")"; - const string svv = vv.str(); - weights.WriteToFile(fname, true, &svv); - } - if (fully_random || size * size_per_proc * miter > corpus.size()) { - if (rank == 0) - Shuffle(&order, rng.get()); - miter = 0; - broadcast(world, order, 0); - } - if (rank == 0) - cerr << "iter=" << iter << " minibatch=" << size_per_proc << " sentences/proc x " << size << " procs. num_feats=" << x.size() << '/' << FD::NumFeats() << " passes_thru_data=" << (iter * batch_size / static_cast(corpus.size())) << " eta=" << lr->eta(iter) << endl; - - const int beg = size * miter * size_per_proc + rank * size_per_proc; - const int end = beg + size_per_proc; - for (int i = beg; i < end; ++i) { - int ex_num = order[i % order.size()]; - if (rank ==0 && size < 3) cerr << rank << ": ex_num=" << ex_num << endl; - decoder.SetId(ex_num); - decoder.Decode(corpus[ex_num], &observer); - } - SparseVector local_grad, g; - observer.GetGradient(&local_grad); - reduce(world, local_grad, g, std::plus >(), 0); - if (rank == 0) { - g /= batch_size; - o->UpdateWeights(g, FD::NumFeats(), &x); + for (int i = 0; i < size_per_proc; ++i) { + int ei = corpus.size() * rng->next(); + int id = ids[ei]; + decoder.SetId(id); + decoder.Decode(corpus[ei], &observer); + } + SparseVector local_grad, g; + observer.GetGradient(&local_grad); + reduce(world, local_grad, g, std::plus >(), 0); + local_grad.clear(); + if (rank == 0) { + g /= (size_per_proc * size); + o->UpdateWeights(g, FD::NumFeats(), &x); + cerr << "XX: " << x << endl; + } + broadcast(world, x, 0); + broadcast(world, converged, 0); + world.barrier(); + if (rank == 0) { cerr << " ELAPSED TIME THIS ITERATION=" << timer.elapsed() << endl; } } - broadcast(world, x, 0); - world.barrier(); } return 0; } diff --git a/training/online_optimizer.cc b/training/online_optimizer.cc index db55c95e..3ed95452 100644 --- a/training/online_optimizer.cc +++ b/training/online_optimizer.cc @@ -12,3 +12,5 @@ double ExponentialDecayLearningRate::eta(int k) const { OnlineOptimizer::~OnlineOptimizer() {} +void OnlineOptimizer::ResetEpochImpl() {} + diff --git a/training/online_optimizer.h b/training/online_optimizer.h index 963c0380..312aabae 100644 --- a/training/online_optimizer.h +++ b/training/online_optimizer.h @@ -58,6 +58,7 @@ class OnlineOptimizer { OnlineOptimizer(const std::tr1::shared_ptr& s, size_t batch_size) : N_(batch_size),schedule_(s),k_() {} + void ResetEpoch() { k_ = 0; ResetEpochImpl(); } void UpdateWeights(const SparseVector& approx_g, int max_feat, SparseVector* weights) { ++k_; const double eta = schedule_->eta(k_); @@ -65,6 +66,7 @@ class OnlineOptimizer { } protected: + virtual void ResetEpochImpl(); virtual void UpdateWeightsImpl(const double& eta, const SparseVector& approx_g, int max_feat, SparseVector* weights) = 0; const size_t N_; // number of training instances per batch @@ -80,6 +82,7 @@ class CumulativeL1OnlineOptimizer : public OnlineOptimizer { OnlineOptimizer(s, training_instances), C_(C), u_() {} protected: + void ResetEpochImpl() { u_ = 0; } void UpdateWeightsImpl(const double& eta, const SparseVector& approx_g, int max_feat, SparseVector* weights) { u_ += eta * C_ / N_; (*weights) += eta * approx_g; -- cgit v1.2.3