From c171ea9c37bf170b91946e0f5d22e7fd0d2c5825 Mon Sep 17 00:00:00 2001
From: Patrick Simianer
Date: Tue, 10 Sep 2013 19:54:40 +0200
Subject: do pclr after sentences..
---
training/dtrain/examples/standard/dtrain.ini | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)
(limited to 'training/dtrain/examples')
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index 23e94285..07350a0b 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -1,6 +1,6 @@
input=./nc-wmt11.de.gz
refs=./nc-wmt11.en.gz
-output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
+output=asdf # a weights file (add .gz for gzip compression) or STDOUT '-'
select_weights=VOID # output average (over epochs) weight vector
decoder_config=./cdec.ini # config for cdec
# weights for these features will be printed on each iteration
@@ -22,3 +22,4 @@ pair_sampling=XYX #
hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
pair_threshold=0 # minimum distance in BLEU (here: > 0)
loss_margin=0 # update if correctly ranked, but within this margin
+pclr=1
--
cgit v1.2.3
From d6265f937e60f53f228feda9934314de5d88f2d0 Mon Sep 17 00:00:00 2001
From: Patrick Simianer
Date: Tue, 10 Sep 2013 20:03:22 +0200
Subject: rm debug stuff
---
training/dtrain/dtrain.cc | 9 ---------
training/dtrain/examples/standard/dtrain.ini | 1 -
2 files changed, 10 deletions(-)
(limited to 'training/dtrain/examples')
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 2d090666..5dfd6286 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -537,15 +537,6 @@ main(int argc, char** argv)
Weights::WriteToFile(w_fn, dense_weights, true);
}
- WriteFile of("-");
- ostream& o = *of.stream();
- o << "<<<<<<<<<<<<<<<<<<<<<<<<\n";
- for (SparseVector::iterator it = learning_rates.begin(); it != learning_rates.end(); ++it) {
- if (it->second == 0) continue;
- o << FD::Convert(it->first) << '\t' << it->second << endl;
- }
- o << ">>>>>>>>>>>>>>>>>>>>>>>>>\n";
-
} // outer loop
if (average) w_average /= (weight_t)T;
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index 07350a0b..c0912a62 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -22,4 +22,3 @@ pair_sampling=XYX #
hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
pair_threshold=0 # minimum distance in BLEU (here: > 0)
loss_margin=0 # update if correctly ranked, but within this margin
-pclr=1
--
cgit v1.2.3
From 8fae8c224fc7a8f8a858ed9a022992d020057f65 Mon Sep 17 00:00:00 2001
From: Patrick Simianer
Date: Tue, 8 Oct 2013 13:57:45 +0200
Subject: dtrain: added pclr variants and new expected-output; fixed bug in
soft syntax features
---
decoder/ff_soft_syntax.cc | 2 +-
training/dtrain/dtrain.cc | 31 +++---
training/dtrain/examples/standard/dtrain.ini | 6 +-
training/dtrain/examples/standard/expected-output | 115 +++++++++++++---------
training/dtrain/parallelize.rb | 11 ++-
5 files changed, 101 insertions(+), 64 deletions(-)
(limited to 'training/dtrain/examples')
diff --git a/decoder/ff_soft_syntax.cc b/decoder/ff_soft_syntax.cc
index 9981fa45..d84f2e6d 100644
--- a/decoder/ff_soft_syntax.cc
+++ b/decoder/ff_soft_syntax.cc
@@ -21,7 +21,7 @@ using namespace std;
struct SoftSyntacticFeaturesImpl {
SoftSyntacticFeaturesImpl(const string& param) {
vector labels = SplitOnWhitespace(param);
- for (unsigned int i = 0; i < labels.size(); i++)
+ //for (unsigned int i = 0; i < labels.size(); i++)
//cerr << "Labels: " << labels.at(i) << endl;
for (unsigned int i = 0; i < labels.size(); i++) {
string label = labels.at(i);
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 9d60a903..38a9b69a 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -40,7 +40,7 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)
("scale_bleu_diff", po::value()->zero_tokens(), "learning rate <- bleu diff of a misranked pair")
("loss_margin", po::value()->default_value(0.), "update if no error in pref pair but model scores this near")
("max_pairs", po::value()->default_value(std::numeric_limits::max()), "max. # of pairs per Sent.")
- ("pclr", po::value()->zero_tokens(), "use a (simple) per-coordinate learning rate")
+ ("pclr", po::value()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate")
("noup", po::value()->zero_tokens(), "do not update weights");
po::options_description cl("Command Line Options");
cl.add_options()
@@ -125,8 +125,7 @@ main(int argc, char** argv)
if (loss_margin > 9998.) loss_margin = std::numeric_limits::max();
bool scale_bleu_diff = false;
if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true;
- bool pclr = false;
- if (cfg.count("pclr")) pclr = true;
+ const string pclr = cfg["pclr"].as();
bool average = false;
if (select_weights == "avg")
average = true;
@@ -190,7 +189,6 @@ main(int argc, char** argv)
weight_t gamma = cfg["gamma"].as();
// faster perceptron: consider only misranked pairs, see
- // DO NOT ENABLE WITH SVM (gamma > 0) OR loss_margin!
bool faster_perceptron = false;
if (gamma==0 && loss_margin==0) faster_perceptron = true;
@@ -251,8 +249,7 @@ main(int argc, char** argv)
cerr << setw(25) << "l1 reg " << l1_reg << " '" << cfg["l1_reg"].as() << "'" << endl;
if (rescale)
cerr << setw(25) << "rescale " << rescale << endl;
- if (pclr)
- cerr << setw(25) << "pclr " << pclr << endl;
+ cerr << setw(25) << "pclr " << pclr << endl;
cerr << setw(25) << "max pairs " << max_pairs << endl;
cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as() << "'" << endl;
cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
@@ -392,22 +389,30 @@ main(int argc, char** argv)
if (scale_bleu_diff) eta = it->first.score - it->second.score;
if (rank_error || margin < loss_margin) {
SparseVector diff_vec = it->first.f - it->second.f;
- if (pclr) {
+ if (pclr != "no") {
sum_up += diff_vec;
} else {
lambdas.plus_eq_v_times_s(diff_vec, eta);
+ if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); // FIXME
}
- if (gamma)
- lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
}
}
// per-coordinate learning rate
- if (pclr) {
+ if (pclr != "no") {
SparseVector::iterator it = sum_up.begin();
- for (; it != lambdas.end(); ++it) {
- learning_rates[it->first]++;
- lambdas[it->first] += it->second / learning_rates[it->first]; //* max(0.00000001, eta/(eta+learning_rates[it->first]));
+ for (; it != sum_up.end(); ++it) {
+ if (pclr == "simple") {
+ lambdas[it->first] += it->second / max(1.0, learning_rates[it->first]);
+ learning_rates[it->first]++;
+ } else if (pclr == "adagrad") {
+ if (learning_rates[it->first] == 0) {
+ lambdas[it->first] += it->second * eta;
+ } else {
+ lambdas[it->first] += it->second * eta * learning_rates[it->first];
+ }
+ learning_rates[it->first] += pow(it->second, 2.0);
+ }
}
}
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index c0912a62..e6d6382e 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -1,6 +1,6 @@
input=./nc-wmt11.de.gz
refs=./nc-wmt11.en.gz
-output=asdf # a weights file (add .gz for gzip compression) or STDOUT '-'
+output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
select_weights=VOID # output average (over epochs) weight vector
decoder_config=./cdec.ini # config for cdec
# weights for these features will be printed on each iteration
@@ -10,11 +10,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr
stop_after=10 # stop epoch after 10 inputs
# interesting stuff
-epochs=2 # run over input 2 times
+epochs=3 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx) BLEU4
scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron)
+learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
gamma=0 # use SVM reg
sample_from=kbest # use kbest lists (as opposed to forest)
filter=uniq # only unique entries in kbest (surface form)
diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output
index 21f91244..a35bbe6f 100644
--- a/training/dtrain/examples/standard/expected-output
+++ b/training/dtrain/examples/standard/expected-output
@@ -4,13 +4,13 @@ Reading ./nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
Example feature: Shape_S00000_T00000
-Seeding random number sequence to 970626287
+Seeding random number sequence to 4049211323
dtrain
Parameters:
k 100
N 4
- T 2
+ T 3
scorer 'fixed_stupid_bleu'
sample from 'kbest'
filter 'uniq'
@@ -23,6 +23,7 @@ Parameters:
pair threshold 0
select weights 'VOID'
l1 reg 0 'none'
+ pclr no
max pairs 4294967295
cdec cfg './cdec.ini'
input './nc-wmt11.de.gz'
@@ -30,62 +31,88 @@ Parameters:
output '-'
stop_after 10
(a dot represents 10 inputs)
-Iteration #1 of 2.
+Iteration #1 of 3.
. 10
Stopping after 10 input sentences.
WEIGHTS
- Glue = -614
- WordPenalty = +1256.8
- LanguageModel = +5610.5
- LanguageModel_OOV = -1449
- PhraseModel_0 = -2107
- PhraseModel_1 = -4666.1
- PhraseModel_2 = -2713.5
- PhraseModel_3 = +4204.3
- PhraseModel_4 = -1435.8
- PhraseModel_5 = +916
- PhraseModel_6 = +190
- PassThrough = -2527
+ Glue = -1100
+ WordPenalty = -82.082
+ LanguageModel = -3199.1
+ LanguageModel_OOV = -192
+ PhraseModel_0 = +3128.2
+ PhraseModel_1 = -1610.2
+ PhraseModel_2 = -4336.5
+ PhraseModel_3 = +2910.3
+ PhraseModel_4 = +2523.2
+ PhraseModel_5 = +506
+ PhraseModel_6 = +1467
+ PassThrough = -387
---
- 1best avg score: 0.17874 (+0.17874)
- 1best avg model score: 88399 (+88399)
- avg # pairs: 798.2 (meaningless)
- avg # rank err: 798.2
+ 1best avg score: 0.16966 (+0.16966)
+ 1best avg model score: 2.9874e+05 (+2.9874e+05)
+ avg # pairs: 906.3 (meaningless)
+ avg # rank err: 906.3
avg # margin viol: 0
- non0 feature count: 887
+ non0 feature count: 825
avg list sz: 91.3
- avg f count: 126.85
-(time 0.33 min, 2 s/S)
+ avg f count: 139.77
+(time 0.35 min, 2.1 s/S)
-Iteration #2 of 2.
+Iteration #2 of 3.
. 10
WEIGHTS
- Glue = -1025
- WordPenalty = +1751.5
- LanguageModel = +10059
- LanguageModel_OOV = -4490
- PhraseModel_0 = -2640.7
- PhraseModel_1 = -3757.4
- PhraseModel_2 = -1133.1
- PhraseModel_3 = +1837.3
- PhraseModel_4 = -3534.3
- PhraseModel_5 = +2308
- PhraseModel_6 = +1677
- PassThrough = -6222
+ Glue = -1221
+ WordPenalty = +836.89
+ LanguageModel = +2332.3
+ LanguageModel_OOV = -1451
+ PhraseModel_0 = +1507.2
+ PhraseModel_1 = -2728.4
+ PhraseModel_2 = -4183.6
+ PhraseModel_3 = +1816.3
+ PhraseModel_4 = -2894.7
+ PhraseModel_5 = +1403
+ PhraseModel_6 = +35
+ PassThrough = -1097
---
- 1best avg score: 0.30764 (+0.12891)
- 1best avg model score: -2.5042e+05 (-3.3882e+05)
- avg # pairs: 725.9 (meaningless)
- avg # rank err: 725.9
+ 1best avg score: 0.17399 (+0.004325)
+ 1best avg model score: 49369 (-2.4937e+05)
+ avg # pairs: 662.4 (meaningless)
+ avg # rank err: 662.4
avg # margin viol: 0
- non0 feature count: 1499
+ non0 feature count: 1235
avg list sz: 91.3
- avg f count: 114.34
-(time 0.32 min, 1.9 s/S)
+ avg f count: 125.11
+(time 0.27 min, 1.6 s/S)
+
+Iteration #3 of 3.
+ . 10
+WEIGHTS
+ Glue = -1574
+ WordPenalty = -17.372
+ LanguageModel = +6861.8
+ LanguageModel_OOV = -3997
+ PhraseModel_0 = -398.76
+ PhraseModel_1 = -3419.6
+ PhraseModel_2 = -3186.7
+ PhraseModel_3 = +1050.8
+ PhraseModel_4 = -2902.7
+ PhraseModel_5 = -486
+ PhraseModel_6 = -436
+ PassThrough = -2985
+ ---
+ 1best avg score: 0.30742 (+0.13343)
+ 1best avg model score: -1.5393e+05 (-2.0329e+05)
+ avg # pairs: 623.8 (meaningless)
+ avg # rank err: 623.8
+ avg # margin viol: 0
+ non0 feature count: 1770
+ avg list sz: 91.3
+ avg f count: 118.58
+(time 0.25 min, 1.5 s/S)
Writing weights file to '-' ...
done
---
-Best iteration: 2 [SCORE 'fixed_stupid_bleu'=0.30764].
-This took 0.65 min.
+Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742].
+This took 0.86667 min.
diff --git a/training/dtrain/parallelize.rb b/training/dtrain/parallelize.rb
index 2fc66cab..60ca9422 100755
--- a/training/dtrain/parallelize.rb
+++ b/training/dtrain/parallelize.rb
@@ -21,7 +21,8 @@ opts = Trollop::options do
opt :qsub, "use qsub", :type => :bool, :default => false
opt :dtrain_binary, "path to dtrain binary", :type => :string
opt :extra_qsub, "extra qsub args", :type => :string, :default => ""
- opt :per_shard_decoder_configs, "give special decoder config per shard", :type => :string, :short => :o
+ opt :per_shard_decoder_configs, "give special decoder config per shard", :type => :string, :short => '-o'
+ opt :first_input_weights, "input weights for first iter", :type => :string, :default => '', :short => '-w'
end
usage if not opts[:config]&&opts[:shards]&&opts[:input]&&opts[:references]
@@ -54,6 +55,7 @@ input = opts[:input]
refs = opts[:references]
use_qsub = opts[:qsub]
shards_at_once = opts[:processes_at_once]
+first_input_weights = opts[:first_input_weights]
`mkdir work`
@@ -137,10 +139,13 @@ end
else
cdec_cfg = ""
end
+ if first_input_weights!='' && epoch == 0
+ input_weights = "--input_weights #{first_input_weights}"
+ end
pids << Kernel.fork {
- `#{qsub_str_start}#{dtrain_bin} -c #{ini} #{cdec_cfg}\
+ `#{qsub_str_start}#{dtrain_bin} -c #{ini} #{cdec_cfg} #{input_weights}\
--input #{input_files[shard]}\
- --refs #{refs_files[shard]} #{input_weights}\
+ --refs #{refs_files[shard]}\
--output work/weights.#{shard}.#{epoch}#{qsub_str_end} #{local_end}`
}
weights_files << "work/weights.#{shard}.#{epoch}"
--
cgit v1.2.3
From 035585ee59e593d2b0cc358068d6a5dd639037cc Mon Sep 17 00:00:00 2001
From: Patrick Simianer
Date: Sun, 3 Nov 2013 21:24:51 +0100
Subject: bitext input for dtrain
---
training/dtrain/Makefile.am | 2 +-
training/dtrain/dtrain.cc | 45 ++++++++++++++++++++------
training/dtrain/dtrain.h | 2 ++
training/dtrain/examples/standard/dtrain.ini | 5 +--
training/dtrain/examples/standard/nc-wmt11.gz | Bin 0 -> 113504 bytes
5 files changed, 41 insertions(+), 13 deletions(-)
create mode 100644 training/dtrain/examples/standard/nc-wmt11.gz
(limited to 'training/dtrain/examples')
diff --git a/training/dtrain/Makefile.am b/training/dtrain/Makefile.am
index 844c790d..ecb6c128 100644
--- a/training/dtrain/Makefile.am
+++ b/training/dtrain/Makefile.am
@@ -1,7 +1,7 @@
bin_PROGRAMS = dtrain
dtrain_SOURCES = dtrain.cc score.cc dtrain.h kbestget.h ksampler.h pairsampling.h score.h
-dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a
+dtrain_LDADD = ../../decoder/libcdec.a ../../klm/search/libksearch.a ../../mteval/libmteval.a ../../utils/libutils.a ../../klm/lm/libklm.a ../../klm/util/libklm_util.a ../../klm/util/double-conversion/libklm_util_double.a -lboost_regex
AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 38a9b69a..a496f08a 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -12,8 +12,9 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)
{
po::options_description ini("Configuration File Options");
ini.add_options()
- ("input", po::value()->default_value("-"), "input file (src)")
+ ("input", po::value(), "input file (src)")
("refs,r", po::value(), "references")
+ ("bitext,b", po::value(), "bitext: 'src ||| tgt'")
("output", po::value()->default_value("-"), "output weights file, '-' for STDOUT")
("input_weights", po::value(), "input weights file (e.g. from previous iteration)")
("decoder_config", po::value(), "configuration file for cdec")
@@ -73,13 +74,17 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)
cerr << "Wrong 'pair_sampling' param: '" << (*cfg)["pair_sampling"].as() << "'." << endl;
return false;
}
- if(cfg->count("hi_lo") && (*cfg)["pair_sampling"].as() != "XYX") {
+ if (cfg->count("hi_lo") && (*cfg)["pair_sampling"].as() != "XYX") {
cerr << "Warning: hi_lo only works with pair_sampling XYX." << endl;
}
- if((*cfg)["hi_lo"].as() > 0.5 || (*cfg)["hi_lo"].as() < 0.01) {
+ if ((*cfg)["hi_lo"].as() > 0.5 || (*cfg)["hi_lo"].as() < 0.01) {
cerr << "hi_lo must lie in [0.01, 0.5]" << endl;
return false;
}
+ if ((cfg->count("input")>0 || cfg->count("refs")>0) && cfg->count("bitext")>0) {
+ cerr << "Provide 'input' and 'refs' or 'bitext', not both." << endl;
+ return false;
+ }
if ((*cfg)["pair_threshold"].as() < 0) {
cerr << "The threshold must be >= 0!" << endl;
return false;
@@ -208,13 +213,24 @@ main(int argc, char** argv)
// output
string output_fn = cfg["output"].as();
// input
- string input_fn = cfg["input"].as();
+ bool read_bitext = false;
+ string input_fn;
+ if (cfg.count("bitext")) {
+ read_bitext = true;
+ input_fn = cfg["bitext"].as();
+ } else {
+ input_fn = cfg["input"].as();
+ }
ReadFile input(input_fn);
// buffer input for t > 0
vector src_str_buf; // source strings (decoder takes only strings)
vector > ref_ids_buf; // references as WordID vecs
- string refs_fn = cfg["refs"].as();
- ReadFile refs(refs_fn);
+ ReadFile refs;
+ string refs_fn;
+ if (!read_bitext) {
+ refs_fn = cfg["refs"].as();
+ refs.Init(refs_fn);
+ }
unsigned in_sz = std::numeric_limits::max(); // input index, input size
vector > all_scores;
@@ -253,7 +269,8 @@ main(int argc, char** argv)
cerr << setw(25) << "max pairs " << max_pairs << endl;
cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as() << "'" << endl;
cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
- cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl;
+ if (!read_bitext)
+ cerr << setw(25) << "refs " << "'" << refs_fn << "'" << endl;
cerr << setw(25) << "output " << "'" << output_fn << "'" << endl;
if (cfg.count("input_weights"))
cerr << setw(25) << "weights in " << "'" << cfg["input_weights"].as() << "'" << endl;
@@ -279,9 +296,16 @@ main(int argc, char** argv)
{
string in;
+ string ref;
bool next = false, stop = false; // next iteration or premature stop
if (t == 0) {
if(!getline(*input, in)) next = true;
+ if(read_bitext) {
+ vector strs;
+ boost::algorithm::split_regex(strs, in, boost::regex(" \\|\\|\\| "));
+ in = strs[0];
+ ref = strs[1];
+ }
} else {
if (ii == in_sz) next = true; // stop if we reach the end of our input
}
@@ -318,10 +342,11 @@ main(int argc, char** argv)
// getting input
vector ref_ids; // reference as vector
if (t == 0) {
- string r_;
- getline(*refs, r_);
+ if (!read_bitext) {
+ getline(*refs, ref);
+ }
vector ref_tok;
- boost::split(ref_tok, r_, boost::is_any_of(" "));
+ boost::split(ref_tok, ref, boost::is_any_of(" "));
register_and_convert(ref_tok, ref_ids);
ref_ids_buf.push_back(ref_ids);
src_str_buf.push_back(in);
diff --git a/training/dtrain/dtrain.h b/training/dtrain/dtrain.h
index 3981fb39..ccb5ad4d 100644
--- a/training/dtrain/dtrain.h
+++ b/training/dtrain/dtrain.h
@@ -9,6 +9,8 @@
#include
#include
+#include
+#include
#include
#include "decoder.h"
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index e6d6382e..7dbb4ff0 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -1,5 +1,6 @@
-input=./nc-wmt11.de.gz
-refs=./nc-wmt11.en.gz
+#input=./nc-wmt11.de.gz
+#refs=./nc-wmt11.en.gz
+bitext=./nc-wmt11.gz
output=- # a weights file (add .gz for gzip compression) or STDOUT '-'
select_weights=VOID # output average (over epochs) weight vector
decoder_config=./cdec.ini # config for cdec
diff --git a/training/dtrain/examples/standard/nc-wmt11.gz b/training/dtrain/examples/standard/nc-wmt11.gz
new file mode 100644
index 00000000..c39c5aef
Binary files /dev/null and b/training/dtrain/examples/standard/nc-wmt11.gz differ
--
cgit v1.2.3
From a6d8ae2bd3cc2294e17588656e6aa20a96f6fcbc Mon Sep 17 00:00:00 2001
From: Patrick Simianer
Date: Tue, 12 Nov 2013 18:36:03 +0100
Subject: implemented batch tuning
---
training/dtrain/dtrain.cc | 81 ++++++++++++++++++++++------
training/dtrain/examples/standard/dtrain.ini | 4 +-
2 files changed, 67 insertions(+), 18 deletions(-)
(limited to 'training/dtrain/examples')
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index a496f08a..23131810 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -42,6 +42,9 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)
("loss_margin", po::value()->default_value(0.), "update if no error in pref pair but model scores this near")
("max_pairs", po::value()->default_value(std::numeric_limits::max()), "max. # of pairs per Sent.")
("pclr", po::value()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate")
+ ("batch", po::value()->zero_tokens(), "do batch optimization")
+ //("repeat", po::value()->default_value(1), "repeat optimization over kbest list this number of times")
+ //("test-k-best", po::value()->zero_tokens(), "check if optimization works (use repeat >= 2)")
("noup", po::value()->zero_tokens(), "do not update weights");
po::options_description cl("Command Line Options");
cl.add_options()
@@ -126,7 +129,12 @@ main(int argc, char** argv)
const float hi_lo = cfg["hi_lo"].as();
const score_t approx_bleu_d = cfg["approx_bleu_d"].as();
const unsigned max_pairs = cfg["max_pairs"].as();
+ //int repeat = cfg["repeat"].as();
+ //bool test_k_best = false;
+ //if (cfg.count("test-k-best")) test_k_best = true;
weight_t loss_margin = cfg["loss_margin"].as();
+ bool batch = false;
+ if (cfg.count("batch")) batch = true;
if (loss_margin > 9998.) loss_margin = std::numeric_limits::max();
bool scale_bleu_diff = false;
if (cfg.count("scale_bleu_diff")) scale_bleu_diff = true;
@@ -184,10 +192,10 @@ main(int argc, char** argv)
observer->SetScorer(scorer);
// init weights
- vector& dense_weights = decoder.CurrentWeightVector();
+ vector& decoder_weights = decoder.CurrentWeightVector();
SparseVector lambdas, cumulative_penalties, w_average;
- if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as(), &dense_weights);
- Weights::InitSparseVector(dense_weights, &lambdas);
+ if (cfg.count("input_weights")) Weights::InitFromFile(cfg["input_weights"].as(), &decoder_weights);
+ Weights::InitSparseVector(decoder_weights, &lambdas);
// meta params for perceptron, SVM
weight_t eta = cfg["learning_rate"].as();
@@ -245,6 +253,7 @@ main(int argc, char** argv)
cerr << setw(25) << "k " << k << endl;
cerr << setw(25) << "N " << N << endl;
cerr << setw(25) << "T " << T << endl;
+ cerr << setw(25) << "batch " << batch << endl;
cerr << setw(26) << "scorer '" << scorer_str << "'" << endl;
if (scorer_str == "approx_bleu")
cerr << setw(25) << "approx. B discount " << approx_bleu_d << endl;
@@ -267,6 +276,8 @@ main(int argc, char** argv)
cerr << setw(25) << "rescale " << rescale << endl;
cerr << setw(25) << "pclr " << pclr << endl;
cerr << setw(25) << "max pairs " << max_pairs << endl;
+ //cerr << setw(25) << "repeat " << repeat << endl;
+ //cerr << setw(25) << "test k-best " << test_k_best << endl;
cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as() << "'" << endl;
cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
if (!read_bitext)
@@ -281,17 +292,25 @@ main(int argc, char** argv)
// pclr
SparseVector learning_rates;
+ // batch
+ SparseVector batch_updates;
+ weight_t batch_loss;
+
+ //int did_improve; // FIXME for test-k-best
for (unsigned t = 0; t < T; t++) // T epochs
{
-
+
time_t start, end;
time(&start);
score_t score_sum = 0.;
score_t model_sum(0);
unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0;
+ batch_loss = 0.;
if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
+ //did_improve = 0;
+
while(true)
{
@@ -337,7 +356,7 @@ main(int argc, char** argv)
if (next || stop) break;
// weights
- lambdas.init_vector(&dense_weights);
+ lambdas.init_vector(&decoder_weights);
// getting input
vector ref_ids; // reference as vector
@@ -392,33 +411,51 @@ main(int argc, char** argv)
partXYX(samples, pairs, pair_threshold, max_pairs, faster_perceptron, hi_lo);
if (pair_sampling == "PRO")
PROsampling(samples, pairs, pair_threshold, max_pairs);
- npairs += pairs.size();
+ int cur_npairs = pairs.size();
+ npairs += cur_npairs;
+
+ weight_t kbest_loss_first, kbest_loss_last = 0.0;
+//for (int q=0; q < repeat; q++) { // repeat
+
+ weight_t kbest_loss = 0.0; // test-k-best
SparseVector lambdas_copy; // for l1 regularization
SparseVector sum_up; // for pclr
if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas;
for (vector >::iterator it = pairs.begin();
it != pairs.end(); it++) {
- bool rank_error;
+
+ /*if (repeat > 1) {
+ double x = max(0.0, -1.0 * (lambdas.dot(it->first.f) - lambdas.dot(it->second.f)));
+ kbest_loss += x;
+ }*/
+
+ score_t model_diff = it->first.model - it->second.model;
+ bool rank_error = false;
score_t margin;
if (faster_perceptron) { // we only have considering misranked pairs
rank_error = true; // pair sampling already did this for us
margin = std::numeric_limits::max();
} else {
- rank_error = it->first.model <= it->second.model;
- margin = fabs(it->first.model - it->second.model);
+ rank_error = model_diff<=0.0;
+ margin = fabs(model_diff);
if (!rank_error && margin < loss_margin) margin_violations++;
}
if (rank_error) rank_errors++;
if (scale_bleu_diff) eta = it->first.score - it->second.score;
if (rank_error || margin < loss_margin) {
SparseVector diff_vec = it->first.f - it->second.f;
+ if (batch) {
+ batch_loss += max(0., -1.0*model_diff);
+ batch_updates += diff_vec;
+ continue;
+ }
if (pclr != "no") {
sum_up += diff_vec;
} else {
lambdas.plus_eq_v_times_s(diff_vec, eta);
- if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs)); // FIXME
+ if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./cur_npairs));
}
}
}
@@ -487,6 +524,11 @@ main(int argc, char** argv)
}
}
+ //if (q==0) { kbest_loss_first = kbest_loss; }
+ //if (q==repeat-1) { kbest_loss_last = kbest_loss; }
+//}//repeat
+//if((kbest_loss_first - kbest_loss_last) > 0) did_improve++;
+
}
if (rescale) lambdas /= lambdas.l2norm();
@@ -495,14 +537,20 @@ main(int argc, char** argv)
} // input loop
- if (average) w_average += lambdas;
+ if (t == 0) in_sz = ii; // remember size of input (# lines)
- if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset();
+ //if (repeat > 1) cout << "did improve? " << did_improve << " out of " << in_sz << endl;
- if (t == 0) {
- in_sz = ii; // remember size of input (# lines)
+ if (batch) {
+ lambdas.plus_eq_v_times_s(batch_updates, eta);
+ if (gamma) lambdas.plus_eq_v_times_s(lambdas, -2*gamma*eta*(1./npairs));
+ batch_updates.clear();
}
+ if (average) w_average += lambdas;
+
+ if (scorer_str == "approx_bleu" || scorer_str == "lc_bleu") scorer->Reset();
+
// print some stats
score_t score_avg = score_sum/(score_t)in_sz;
score_t model_avg = model_sum/(score_t)in_sz;
@@ -534,6 +582,7 @@ main(int argc, char** argv)
cerr << endl;
cerr << " avg # rank err: ";
cerr << rank_errors/(float)in_sz << endl;
+ if (batch) cerr << " batch loss: " << batch_loss << endl;
cerr << " avg # margin viol: ";
cerr << margin_violations/(float)in_sz << endl;
cerr << " non0 feature count: " << nonz << endl;
@@ -562,9 +611,9 @@ main(int argc, char** argv)
// write weights to file
if (select_weights == "best" || keep) {
- lambdas.init_vector(&dense_weights);
+ lambdas.init_vector(&decoder_weights);
string w_fn = "weights." + boost::lexical_cast(t) + ".gz";
- Weights::WriteToFile(w_fn, dense_weights, true);
+ Weights::WriteToFile(w_fn, decoder_weights, true);
}
} // outer loop
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index 7dbb4ff0..4d096dfb 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -11,11 +11,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr
stop_after=10 # stop epoch after 10 inputs
# interesting stuff
-epochs=3 # run over input 3 times
+epochs=100 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx) BLEU4
scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=1.0 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
+learning_rate=0.0001 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
gamma=0 # use SVM reg
sample_from=kbest # use kbest lists (as opposed to forest)
filter=uniq # only unique entries in kbest (surface form)
--
cgit v1.2.3
From 29473017d0f0cdd6f383d253235e2f3388533d13 Mon Sep 17 00:00:00 2001
From: Patrick Simianer
Date: Tue, 12 Nov 2013 20:07:47 +0100
Subject: impl repeat param
---
training/dtrain/dtrain.cc | 78 ++++++++++++++++------------
training/dtrain/examples/standard/dtrain.ini | 6 ++-
2 files changed, 49 insertions(+), 35 deletions(-)
(limited to 'training/dtrain/examples')
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 23131810..441e2cd7 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -43,7 +43,7 @@ dtrain_init(int argc, char** argv, po::variables_map* cfg)
("max_pairs", po::value()->default_value(std::numeric_limits::max()), "max. # of pairs per Sent.")
("pclr", po::value()->default_value("no"), "use a (simple|adagrad) per-coordinate learning rate")
("batch", po::value()->zero_tokens(), "do batch optimization")
- //("repeat", po::value()->default_value(1), "repeat optimization over kbest list this number of times")
+ ("repeat", po::value()->default_value(1), "repeat optimization over kbest list this number of times")
//("test-k-best", po::value()->zero_tokens(), "check if optimization works (use repeat >= 2)")
("noup", po::value()->zero_tokens(), "do not update weights");
po::options_description cl("Command Line Options");
@@ -129,7 +129,7 @@ main(int argc, char** argv)
const float hi_lo = cfg["hi_lo"].as();
const score_t approx_bleu_d = cfg["approx_bleu_d"].as();
const unsigned max_pairs = cfg["max_pairs"].as();
- //int repeat = cfg["repeat"].as();
+ int repeat = cfg["repeat"].as();
//bool test_k_best = false;
//if (cfg.count("test-k-best")) test_k_best = true;
weight_t loss_margin = cfg["loss_margin"].as();
@@ -276,7 +276,7 @@ main(int argc, char** argv)
cerr << setw(25) << "rescale " << rescale << endl;
cerr << setw(25) << "pclr " << pclr << endl;
cerr << setw(25) << "max pairs " << max_pairs << endl;
- //cerr << setw(25) << "repeat " << repeat << endl;
+ cerr << setw(25) << "repeat " << repeat << endl;
//cerr << setw(25) << "test k-best " << test_k_best << endl;
cerr << setw(25) << "cdec cfg " << "'" << cfg["decoder_config"].as() << "'" << endl;
cerr << setw(25) << "input " << "'" << input_fn << "'" << endl;
@@ -294,23 +294,19 @@ main(int argc, char** argv)
SparseVector learning_rates;
// batch
SparseVector batch_updates;
- weight_t batch_loss;
-
- //int did_improve; // FIXME for test-k-best
+ score_t batch_loss;
for (unsigned t = 0; t < T; t++) // T epochs
{
-
+
time_t start, end;
time(&start);
score_t score_sum = 0.;
score_t model_sum(0);
- unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0;
+ unsigned ii = 0, rank_errors = 0, margin_violations = 0, npairs = 0, f_count = 0, list_sz = 0, kbest_loss_improve = 0;
batch_loss = 0.;
if (!quiet) cerr << "Iteration #" << t+1 << " of " << T << "." << endl;
- //did_improve = 0;
-
while(true)
{
@@ -395,8 +391,10 @@ main(int argc, char** argv)
}
}
- score_sum += (*samples)[0].score; // stats for 1best
- model_sum += (*samples)[0].model;
+ if (repeat == 1) {
+ score_sum += (*samples)[0].score; // stats for 1best
+ model_sum += (*samples)[0].model;
+ }
f_count += observer->get_f_count();
list_sz += observer->get_sz();
@@ -414,24 +412,22 @@ main(int argc, char** argv)
int cur_npairs = pairs.size();
npairs += cur_npairs;
- weight_t kbest_loss_first, kbest_loss_last = 0.0;
+ score_t kbest_loss_first, kbest_loss_last = 0.0;
-//for (int q=0; q < repeat; q++) { // repeat
+ for (int ki=0; ki < repeat; ki++) {
- weight_t kbest_loss = 0.0; // test-k-best
+ score_t kbest_loss = 0.0; // test-k-best
SparseVector lambdas_copy; // for l1 regularization
SparseVector sum_up; // for pclr
if (l1naive||l1clip||l1cumul) lambdas_copy = lambdas;
for (vector >::iterator it = pairs.begin();
it != pairs.end(); it++) {
-
- /*if (repeat > 1) {
- double x = max(0.0, -1.0 * (lambdas.dot(it->first.f) - lambdas.dot(it->second.f)));
- kbest_loss += x;
- }*/
-
score_t model_diff = it->first.model - it->second.model;
+ if (repeat > 1) {
+ model_diff = lambdas.dot(it->first.f) - lambdas.dot(it->second.f);
+ kbest_loss += max(0.0, -1.0 * model_diff);
+ }
bool rank_error = false;
score_t margin;
if (faster_perceptron) { // we only have considering misranked pairs
@@ -442,7 +438,7 @@ main(int argc, char** argv)
margin = fabs(model_diff);
if (!rank_error && margin < loss_margin) margin_violations++;
}
- if (rank_error) rank_errors++;
+ if (rank_error && ki==1) rank_errors++;
if (scale_bleu_diff) eta = it->first.score - it->second.score;
if (rank_error || margin < loss_margin) {
SparseVector diff_vec = it->first.f - it->second.f;
@@ -524,12 +520,27 @@ main(int argc, char** argv)
}
}
- //if (q==0) { kbest_loss_first = kbest_loss; }
- //if (q==repeat-1) { kbest_loss_last = kbest_loss; }
-//}//repeat
-//if((kbest_loss_first - kbest_loss_last) > 0) did_improve++;
+ if (ki==0) kbest_loss_first = kbest_loss;
+ if (ki==repeat-1) { // done
+ kbest_loss_last = kbest_loss;
+ score_t best_score = -1.;
+ score_t best_model = -std::numeric_limits::max();
+ unsigned best_idx;
+ for (unsigned i=0; i < samples->size(); i++) {
+ score_t s = lambdas.dot((*samples)[i].f);
+ if (s > best_model) {
+ best_idx = i;
+ best_model = s;
+ }
+ }
+ score_sum += (*samples)[best_idx].score;
+ model_sum += best_model;
+ }
+ } // repeat
- }
+ if ((kbest_loss_first - kbest_loss_last) >= 0) kbest_loss_improve++;
+
+ } // noup
if (rescale) lambdas /= lambdas.l2norm();
@@ -539,7 +550,6 @@ main(int argc, char** argv)
if (t == 0) in_sz = ii; // remember size of input (# lines)
- //if (repeat > 1) cout << "did improve? " << did_improve << " out of " << in_sz << endl;
if (batch) {
lambdas.plus_eq_v_times_s(batch_updates, eta);
@@ -577,14 +587,16 @@ main(int argc, char** argv)
cerr << _np << " 1best avg model score: " << model_avg;
cerr << _p << " (" << model_diff << ")" << endl;
cerr << " avg # pairs: ";
- cerr << _np << npairs/(float)in_sz;
+ cerr << _np << npairs/(float)in_sz << endl;
+ cerr << " avg # margin viol: ";
+ cerr << margin_violations/(float)in_sz << endl;
+ cerr << " avg # rank err: ";
+ cerr << rank_errors/(float)in_sz;
if (faster_perceptron) cerr << " (meaningless)";
cerr << endl;
- cerr << " avg # rank err: ";
- cerr << rank_errors/(float)in_sz << endl;
if (batch) cerr << " batch loss: " << batch_loss << endl;
- cerr << " avg # margin viol: ";
- cerr << margin_violations/(float)in_sz << endl;
+ if (repeat > 1) cerr << " k-best loss imp: " << ((float)kbest_loss_improve/in_sz)*100 << "%" << endl;
+
cerr << " non0 feature count: " << nonz << endl;
cerr << " avg list sz: " << list_sz/(float)in_sz << endl;
cerr << " avg f count: " << f_count/(float)list_sz << endl;
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index 4d096dfb..ef022469 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -11,11 +11,11 @@ print_weights=Glue WordPenalty LanguageModel LanguageModel_OOV PhraseModel_0 Phr
stop_after=10 # stop epoch after 10 inputs
# interesting stuff
-epochs=100 # run over input 3 times
+epochs=3 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx) BLEU4
scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=0.0001 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
+learning_rate=0.0001 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
gamma=0 # use SVM reg
sample_from=kbest # use kbest lists (as opposed to forest)
filter=uniq # only unique entries in kbest (surface form)
@@ -23,3 +23,5 @@ pair_sampling=XYX #
hi_lo=0.1 # 10 vs 80 vs 10 and 80 vs 10 here
pair_threshold=0 # minimum distance in BLEU (here: > 0)
loss_margin=0 # update if correctly ranked, but within this margin
+repeat=1 # repeat training on a kbest list 1 times
+#batch=true # batch tuning, update after accumulating over all sentences and all kbest lists
--
cgit v1.2.3
From 2d025c839e474045d81b7490adc8842ad427c4e1 Mon Sep 17 00:00:00 2001
From: Patrick Simianer
Date: Tue, 12 Nov 2013 20:39:59 +0100
Subject: fix
---
training/dtrain/dtrain.cc | 36 ++++---
training/dtrain/examples/standard/dtrain.ini | 2 +-
training/dtrain/examples/standard/expected-output | 112 +++++++++++-----------
3 files changed, 80 insertions(+), 70 deletions(-)
(limited to 'training/dtrain/examples')
diff --git a/training/dtrain/dtrain.cc b/training/dtrain/dtrain.cc
index 441e2cd7..0a27a068 100644
--- a/training/dtrain/dtrain.cc
+++ b/training/dtrain/dtrain.cc
@@ -414,6 +414,12 @@ main(int argc, char** argv)
score_t kbest_loss_first, kbest_loss_last = 0.0;
+ for (vector >::iterator it = pairs.begin();
+ it != pairs.end(); it++) {
+ score_t model_diff = it->first.model - it->second.model;
+ kbest_loss_first += max(0.0, -1.0 * model_diff);
+ }
+
for (int ki=0; ki < repeat; ki++) {
score_t kbest_loss = 0.0; // test-k-best
@@ -520,21 +526,22 @@ main(int argc, char** argv)
}
}
- if (ki==0) kbest_loss_first = kbest_loss;
if (ki==repeat-1) { // done
kbest_loss_last = kbest_loss;
- score_t best_score = -1.;
- score_t best_model = -std::numeric_limits::max();
- unsigned best_idx;
- for (unsigned i=0; i < samples->size(); i++) {
- score_t s = lambdas.dot((*samples)[i].f);
- if (s > best_model) {
- best_idx = i;
- best_model = s;
+ if (repeat > 1) {
+ score_t best_score = -1.;
+ score_t best_model = -std::numeric_limits::max();
+ unsigned best_idx;
+ for (unsigned i=0; i < samples->size(); i++) {
+ score_t s = lambdas.dot((*samples)[i].f);
+ if (s > best_model) {
+ best_idx = i;
+ best_model = s;
+ }
}
+ score_sum += (*samples)[best_idx].score;
+ model_sum += best_model;
}
- score_sum += (*samples)[best_idx].score;
- model_sum += best_model;
}
} // repeat
@@ -588,15 +595,14 @@ main(int argc, char** argv)
cerr << _p << " (" << model_diff << ")" << endl;
cerr << " avg # pairs: ";
cerr << _np << npairs/(float)in_sz << endl;
- cerr << " avg # margin viol: ";
- cerr << margin_violations/(float)in_sz << endl;
cerr << " avg # rank err: ";
cerr << rank_errors/(float)in_sz;
if (faster_perceptron) cerr << " (meaningless)";
cerr << endl;
+ cerr << " avg # margin viol: ";
+ cerr << margin_violations/(float)in_sz << endl;
if (batch) cerr << " batch loss: " << batch_loss << endl;
- if (repeat > 1) cerr << " k-best loss imp: " << ((float)kbest_loss_improve/in_sz)*100 << "%" << endl;
-
+ cerr << " k-best loss imp: " << ((float)kbest_loss_improve/in_sz)*100 << "%" << endl;
cerr << " non0 feature count: " << nonz << endl;
cerr << " avg list sz: " << list_sz/(float)in_sz << endl;
cerr << " avg f count: " << f_count/(float)list_sz << endl;
diff --git a/training/dtrain/examples/standard/dtrain.ini b/training/dtrain/examples/standard/dtrain.ini
index ef022469..fc83f08e 100644
--- a/training/dtrain/examples/standard/dtrain.ini
+++ b/training/dtrain/examples/standard/dtrain.ini
@@ -15,7 +15,7 @@ epochs=3 # run over input 3 times
k=100 # use 100best lists
N=4 # optimize (approx) BLEU4
scorer=fixed_stupid_bleu # use 'stupid' BLEU+1
-learning_rate=0.0001 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
+learning_rate=0.1 # learning rate, don't care if gamma=0 (perceptron) and loss_margin=0 (not margin perceptron)
gamma=0 # use SVM reg
sample_from=kbest # use kbest lists (as opposed to forest)
filter=uniq # only unique entries in kbest (surface form)
diff --git a/training/dtrain/examples/standard/expected-output b/training/dtrain/examples/standard/expected-output
index a35bbe6f..75f47337 100644
--- a/training/dtrain/examples/standard/expected-output
+++ b/training/dtrain/examples/standard/expected-output
@@ -4,17 +4,18 @@ Reading ./nc-wmt11.en.srilm.gz
----5---10---15---20---25---30---35---40---45---50---55---60---65---70---75---80---85---90---95--100
****************************************************************************************************
Example feature: Shape_S00000_T00000
-Seeding random number sequence to 4049211323
+Seeding random number sequence to 3751911392
dtrain
Parameters:
k 100
N 4
T 3
+ batch 0
scorer 'fixed_stupid_bleu'
sample from 'kbest'
filter 'uniq'
- learning rate 1
+ learning rate 0.1
gamma 0
loss margin 0
faster perceptron 1
@@ -25,9 +26,9 @@ Parameters:
l1 reg 0 'none'
pclr no
max pairs 4294967295
+ repeat 1
cdec cfg './cdec.ini'
- input './nc-wmt11.de.gz'
- refs './nc-wmt11.en.gz'
+ input './nc-wmt11.gz'
output '-'
stop_after 10
(a dot represents 10 inputs)
@@ -35,25 +36,26 @@ Iteration #1 of 3.
. 10
Stopping after 10 input sentences.
WEIGHTS
- Glue = -1100
- WordPenalty = -82.082
- LanguageModel = -3199.1
- LanguageModel_OOV = -192
- PhraseModel_0 = +3128.2
- PhraseModel_1 = -1610.2
- PhraseModel_2 = -4336.5
- PhraseModel_3 = +2910.3
- PhraseModel_4 = +2523.2
- PhraseModel_5 = +506
- PhraseModel_6 = +1467
- PassThrough = -387
+ Glue = -110
+ WordPenalty = -8.2082
+ LanguageModel = -319.91
+ LanguageModel_OOV = -19.2
+ PhraseModel_0 = +312.82
+ PhraseModel_1 = -161.02
+ PhraseModel_2 = -433.65
+ PhraseModel_3 = +291.03
+ PhraseModel_4 = +252.32
+ PhraseModel_5 = +50.6
+ PhraseModel_6 = +146.7
+ PassThrough = -38.7
---
1best avg score: 0.16966 (+0.16966)
- 1best avg model score: 2.9874e+05 (+2.9874e+05)
- avg # pairs: 906.3 (meaningless)
- avg # rank err: 906.3
+ 1best avg model score: 29874 (+29874)
+ avg # pairs: 906.3
+ avg # rank err: 0 (meaningless)
avg # margin viol: 0
- non0 feature count: 825
+ k-best loss imp: 100%
+ non0 feature count: 832
avg list sz: 91.3
avg f count: 139.77
(time 0.35 min, 2.1 s/S)
@@ -61,25 +63,26 @@ WEIGHTS
Iteration #2 of 3.
. 10
WEIGHTS
- Glue = -1221
- WordPenalty = +836.89
- LanguageModel = +2332.3
- LanguageModel_OOV = -1451
- PhraseModel_0 = +1507.2
- PhraseModel_1 = -2728.4
- PhraseModel_2 = -4183.6
- PhraseModel_3 = +1816.3
- PhraseModel_4 = -2894.7
- PhraseModel_5 = +1403
- PhraseModel_6 = +35
- PassThrough = -1097
+ Glue = -122.1
+ WordPenalty = +83.689
+ LanguageModel = +233.23
+ LanguageModel_OOV = -145.1
+ PhraseModel_0 = +150.72
+ PhraseModel_1 = -272.84
+ PhraseModel_2 = -418.36
+ PhraseModel_3 = +181.63
+ PhraseModel_4 = -289.47
+ PhraseModel_5 = +140.3
+ PhraseModel_6 = +3.5
+ PassThrough = -109.7
---
1best avg score: 0.17399 (+0.004325)
- 1best avg model score: 49369 (-2.4937e+05)
- avg # pairs: 662.4 (meaningless)
- avg # rank err: 662.4
+ 1best avg model score: 4936.9 (-24937)
+ avg # pairs: 662.4
+ avg # rank err: 0 (meaningless)
avg # margin viol: 0
- non0 feature count: 1235
+ k-best loss imp: 100%
+ non0 feature count: 1240
avg list sz: 91.3
avg f count: 125.11
(time 0.27 min, 1.6 s/S)
@@ -87,32 +90,33 @@ WEIGHTS
Iteration #3 of 3.
. 10
WEIGHTS
- Glue = -1574
- WordPenalty = -17.372
- LanguageModel = +6861.8
- LanguageModel_OOV = -3997
- PhraseModel_0 = -398.76
- PhraseModel_1 = -3419.6
- PhraseModel_2 = -3186.7
- PhraseModel_3 = +1050.8
- PhraseModel_4 = -2902.7
- PhraseModel_5 = -486
- PhraseModel_6 = -436
- PassThrough = -2985
+ Glue = -157.4
+ WordPenalty = -1.7372
+ LanguageModel = +686.18
+ LanguageModel_OOV = -399.7
+ PhraseModel_0 = -39.876
+ PhraseModel_1 = -341.96
+ PhraseModel_2 = -318.67
+ PhraseModel_3 = +105.08
+ PhraseModel_4 = -290.27
+ PhraseModel_5 = -48.6
+ PhraseModel_6 = -43.6
+ PassThrough = -298.5
---
1best avg score: 0.30742 (+0.13343)
- 1best avg model score: -1.5393e+05 (-2.0329e+05)
- avg # pairs: 623.8 (meaningless)
- avg # rank err: 623.8
+ 1best avg model score: -15393 (-20329)
+ avg # pairs: 623.8
+ avg # rank err: 0 (meaningless)
avg # margin viol: 0
- non0 feature count: 1770
+ k-best loss imp: 100%
+ non0 feature count: 1776
avg list sz: 91.3
avg f count: 118.58
-(time 0.25 min, 1.5 s/S)
+(time 0.28 min, 1.7 s/S)
Writing weights file to '-' ...
done
---
Best iteration: 3 [SCORE 'fixed_stupid_bleu'=0.30742].
-This took 0.86667 min.
+This took 0.9 min.
--
cgit v1.2.3