From 7640d85b92f61016e0712825920c6a259329d79b Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Sun, 18 Nov 2012 11:31:21 -0500 Subject: more consistent naming, interface, fix compile error --- pro-train/Makefile.am | 11 - pro-train/README.shared-mem | 9 - pro-train/dist-pro.pl | 671 ------------------------------ pro-train/mr_pro_generate_mapper_input.pl | 18 - pro-train/mr_pro_map.cc | 201 --------- pro-train/mr_pro_reduce.cc | 286 ------------- 6 files changed, 1196 deletions(-) delete mode 100644 pro-train/Makefile.am delete mode 100644 pro-train/README.shared-mem delete mode 100755 pro-train/dist-pro.pl delete mode 100755 pro-train/mr_pro_generate_mapper_input.pl delete mode 100644 pro-train/mr_pro_map.cc delete mode 100644 pro-train/mr_pro_reduce.cc (limited to 'pro-train') diff --git a/pro-train/Makefile.am b/pro-train/Makefile.am deleted file mode 100644 index 1e9d46b0..00000000 --- a/pro-train/Makefile.am +++ /dev/null @@ -1,11 +0,0 @@ -bin_PROGRAMS = \ - mr_pro_map \ - mr_pro_reduce - -mr_pro_map_SOURCES = mr_pro_map.cc -mr_pro_map_LDADD = $(top_srcdir)/training/libtraining.a $(top_srcdir)/decoder/libcdec.a $(top_srcdir)/mteval/libmteval.a $(top_srcdir)/utils/libutils.a -lz - -mr_pro_reduce_SOURCES = mr_pro_reduce.cc -mr_pro_reduce_LDADD = $(top_srcdir)/training/liblbfgs/liblbfgs.a $(top_srcdir)/utils/libutils.a -lz - -AM_CPPFLAGS = -W -Wall -Wno-sign-compare -I$(top_srcdir)/utils -I$(top_srcdir)/decoder -I$(top_srcdir)/mteval -I$(top_srcdir)/training diff --git a/pro-train/README.shared-mem b/pro-train/README.shared-mem deleted file mode 100644 index 7728efc0..00000000 --- a/pro-train/README.shared-mem +++ /dev/null @@ -1,9 +0,0 @@ -If you want to run dist-vest.pl on a very large shared memory machine, do the -following: - - ./dist-vest.pl --use-make I --decode-nodes J --weights weights.init --source-file=dev.src --ref-files=dev.ref.* cdec.ini - -This will use I jobs for doing the line search and J jobs to run the decoder. Typically, since the -decoder must load grammars, language models, etc., J should be smaller than I, but this will depend -on the system you are running on and the complexity of the models used for decoding. - diff --git a/pro-train/dist-pro.pl b/pro-train/dist-pro.pl deleted file mode 100755 index 31258fa6..00000000 --- a/pro-train/dist-pro.pl +++ /dev/null @@ -1,671 +0,0 @@ -#!/usr/bin/env perl -use strict; -my @ORIG_ARGV=@ARGV; -use Cwd qw(getcwd); -my $SCRIPT_DIR; BEGIN { use Cwd qw/ abs_path /; use File::Basename; $SCRIPT_DIR = dirname(abs_path($0)); push @INC, $SCRIPT_DIR, "$SCRIPT_DIR/../environment"; } - -# Skip local config (used for distributing jobs) if we're running in local-only mode -use LocalConfig; -use Getopt::Long; -use IPC::Open2; -use POSIX ":sys_wait_h"; -my $QSUB_CMD = qsub_args(mert_memory()); -my $default_jobs = env_default_jobs(); - -my $VEST_DIR="$SCRIPT_DIR/../dpmert"; -require "$VEST_DIR/libcall.pl"; - -# Default settings -my $srcFile; -my $refFiles; -my $bin_dir = $SCRIPT_DIR; -die "Bin directory $bin_dir missing/inaccessible" unless -d $bin_dir; -my $FAST_SCORE="$bin_dir/../mteval/fast_score"; -die "Can't execute $FAST_SCORE" unless -x $FAST_SCORE; -my $MAPINPUT = "$bin_dir/mr_pro_generate_mapper_input.pl"; -my $MAPPER = "$bin_dir/mr_pro_map"; -my $REDUCER = "$bin_dir/mr_pro_reduce"; -my $parallelize = "$VEST_DIR/parallelize.pl"; -my $libcall = "$VEST_DIR/libcall.pl"; -my $sentserver = "$VEST_DIR/sentserver"; -my $sentclient = "$VEST_DIR/sentclient"; -my $LocalConfig = "$SCRIPT_DIR/../environment/LocalConfig.pm"; - -my $SCORER = $FAST_SCORE; -die "Can't find $MAPPER" unless -x $MAPPER; -my $cdec = "$bin_dir/../decoder/cdec"; -die "Can't find decoder in $cdec" unless -x $cdec; -die "Can't find $parallelize" unless -x $parallelize; -die "Can't find $libcall" unless -e $libcall; -my $decoder = $cdec; -my $lines_per_mapper = 30; -my $iteration = 1; -my $best_weights; -my $psi = 1; -my $default_max_iter = 30; -my $max_iterations = $default_max_iter; -my $jobs = $default_jobs; # number of decode nodes -my $pmem = "4g"; -my $disable_clean = 0; -my %seen_weights; -my $help = 0; -my $epsilon = 0.0001; -my $dryrun = 0; -my $last_score = -10000000; -my $metric = "ibm_bleu"; -my $dir; -my $iniFile; -my $weights; -my $use_make = 1; # use make to parallelize -my $useqsub = 0; -my $initial_weights; -my $pass_suffix = ''; -my $cpbin=1; - -# regularization strength -my $tune_regularizer = 0; -my $reg = 500; -my $reg_previous = 5000; - -# Process command-line options -Getopt::Long::Configure("no_auto_abbrev"); -if (GetOptions( - "jobs=i" => \$jobs, - "dont-clean" => \$disable_clean, - "pass-suffix=s" => \$pass_suffix, - "qsub" => \$useqsub, - "dry-run" => \$dryrun, - "epsilon=s" => \$epsilon, - "interpolate-with-weights=f" => \$psi, - "help" => \$help, - "weights=s" => \$initial_weights, - "tune-regularizer" => \$tune_regularizer, - "reg=f" => \$reg, - "reg-previous=f" => \$reg_previous, - "use-make=i" => \$use_make, - "max-iterations=i" => \$max_iterations, - "pmem=s" => \$pmem, - "cpbin!" => \$cpbin, - "ref-files=s" => \$refFiles, - "metric=s" => \$metric, - "source-file=s" => \$srcFile, - "workdir=s" => \$dir, -) == 0 || @ARGV!=1 || $help) { - print_help(); - exit; -} - -die "--tune-regularizer is no longer supported with --reg-previous and --reg. Please tune manually.\n" if $tune_regularizer; - -if ($useqsub) { - $use_make = 0; - die "LocalEnvironment.pm does not have qsub configuration for this host. Cannot run with --qsub!\n" unless has_qsub(); -} - -my @missing_args = (); -if (!defined $srcFile) { push @missing_args, "--source-file"; } -if (!defined $refFiles) { push @missing_args, "--ref-files"; } -if (!defined $initial_weights) { push @missing_args, "--weights"; } -die "Please specify missing arguments: " . join (', ', @missing_args) . "\n" if (@missing_args); - -if ($metric =~ /^(combi|ter)$/i) { - $lines_per_mapper = 5; -} - -($iniFile) = @ARGV; - - -sub write_config; -sub enseg; -sub print_help; - -my $nodelist; -my $host =check_output("hostname"); chomp $host; -my $bleu; -my $interval_count = 0; -my $logfile; -my $projected_score; - -# used in sorting scores -my $DIR_FLAG = '-r'; -if ($metric =~ /^ter$|^aer$/i) { - $DIR_FLAG = ''; -} - -my $refs_comma_sep = get_comma_sep_refs('r',$refFiles); - -unless ($dir){ - $dir = "protrain"; -} -unless ($dir =~ /^\//){ # convert relative path to absolute path - my $basedir = check_output("pwd"); - chomp $basedir; - $dir = "$basedir/$dir"; -} - - -# Initializations and helper functions -srand; - -my @childpids = (); -my @cleanupcmds = (); - -sub cleanup { - print STDERR "Cleanup...\n"; - for my $pid (@childpids){ unchecked_call("kill $pid"); } - for my $cmd (@cleanupcmds){ unchecked_call("$cmd"); } - exit 1; -}; -# Always call cleanup, no matter how we exit -*CORE::GLOBAL::exit = - sub{ cleanup(); }; -$SIG{INT} = "cleanup"; -$SIG{TERM} = "cleanup"; -$SIG{HUP} = "cleanup"; - -my $decoderBase = check_output("basename $decoder"); chomp $decoderBase; -my $newIniFile = "$dir/$decoderBase.ini"; -my $inputFileName = "$dir/input"; -my $user = $ENV{"USER"}; - - -# process ini file --e $iniFile || die "Error: could not open $iniFile for reading\n"; -open(INI, $iniFile); - -use File::Basename qw(basename); -#pass bindir, refs to vars holding bin -sub modbin { - local $_; - my $bindir=shift; - check_call("mkdir -p $bindir"); - -d $bindir || die "couldn't make bindir $bindir"; - for (@_) { - my $src=$$_; - $$_="$bindir/".basename($src); - check_call("cp -p $src $$_"); - } -} -sub dirsize { - opendir ISEMPTY,$_[0]; - return scalar(readdir(ISEMPTY))-1; -} -my @allweights; -if ($dryrun){ - write_config(*STDERR); - exit 0; -} else { - if (-e $dir && dirsize($dir)>1 && -e "$dir/hgs" ){ # allow preexisting logfile, binaries, but not dist-pro.pl outputs - die "ERROR: working dir $dir already exists\n\n"; - } else { - -e $dir || mkdir $dir; - mkdir "$dir/hgs"; - modbin("$dir/bin",\$LocalConfig,\$cdec,\$SCORER,\$MAPINPUT,\$MAPPER,\$REDUCER,\$parallelize,\$sentserver,\$sentclient,\$libcall) if $cpbin; - mkdir "$dir/scripts"; - my $cmdfile="$dir/rerun-pro.sh"; - open CMD,'>',$cmdfile; - print CMD "cd ",&getcwd,"\n"; -# print CMD &escaped_cmdline,"\n"; #buggy - last arg is quoted. - my $cline=&cmdline."\n"; - print CMD $cline; - close CMD; - print STDERR $cline; - chmod(0755,$cmdfile); - check_call("cp $initial_weights $dir/weights.0"); - die "Can't find weights.0" unless (-e "$dir/weights.0"); - } - write_config(*STDERR); -} - - -# Generate initial files and values -check_call("cp $iniFile $newIniFile"); -$iniFile = $newIniFile; - -my $newsrc = "$dir/dev.input"; -enseg($srcFile, $newsrc); -$srcFile = $newsrc; -my $devSize = 0; -open F, "<$srcFile" or die "Can't read $srcFile: $!"; -while() { $devSize++; } -close F; - -unless($best_weights){ $best_weights = $weights; } -unless($projected_score){ $projected_score = 0.0; } -$seen_weights{$weights} = 1; - -my $random_seed = int(time / 1000); -my $lastWeightsFile; -my $lastPScore = 0; -# main optimization loop -while (1){ - print STDERR "\n\nITERATION $iteration\n==========\n"; - - if ($iteration > $max_iterations){ - print STDERR "\nREACHED STOPPING CRITERION: Maximum iterations\n"; - last; - } - # iteration-specific files - my $runFile="$dir/run.raw.$iteration"; - my $onebestFile="$dir/1best.$iteration"; - my $logdir="$dir/logs.$iteration"; - my $decoderLog="$logdir/decoder.sentserver.log.$iteration"; - my $scorerLog="$logdir/scorer.log.$iteration"; - check_call("mkdir -p $logdir"); - - - #decode - print STDERR "RUNNING DECODER AT "; - print STDERR unchecked_output("date"); - my $im1 = $iteration - 1; - my $weightsFile="$dir/weights.$im1"; - push @allweights, "-w $dir/weights.$im1"; - `rm -f $dir/hgs/*.gz`; - my $decoder_cmd = "$decoder -c $iniFile --weights$pass_suffix $weightsFile -O $dir/hgs"; - my $pcmd; - if ($use_make) { - $pcmd = "cat $srcFile | $parallelize --use-fork -p $pmem -e $logdir -j $jobs --"; - } else { - $pcmd = "cat $srcFile | $parallelize -p $pmem -e $logdir -j $jobs --"; - } - my $cmd = "$pcmd $decoder_cmd 2> $decoderLog 1> $runFile"; - print STDERR "COMMAND:\n$cmd\n"; - check_bash_call($cmd); - my $num_hgs; - my $num_topbest; - my $retries = 0; - while($retries < 5) { - $num_hgs = check_output("ls $dir/hgs/*.gz | wc -l"); - $num_topbest = check_output("wc -l < $runFile"); - print STDERR "NUMBER OF HGs: $num_hgs\n"; - print STDERR "NUMBER OF TOP-BEST HYPs: $num_topbest\n"; - if($devSize == $num_hgs && $devSize == $num_topbest) { - last; - } else { - print STDERR "Incorrect number of hypergraphs or topbest. Waiting for distributed filesystem and retrying...\n"; - sleep(3); - } - $retries++; - } - die "Dev set contains $devSize sentences, but we don't have topbest and hypergraphs for all these! Decoder failure? Check $decoderLog\n" if ($devSize != $num_hgs || $devSize != $num_topbest); - my $dec_score = check_output("cat $runFile | $SCORER $refs_comma_sep -m $metric"); - chomp $dec_score; - print STDERR "DECODER SCORE: $dec_score\n"; - - # save space - check_call("gzip -f $runFile"); - check_call("gzip -f $decoderLog"); - - # run optimizer - print STDERR "RUNNING OPTIMIZER AT "; - print STDERR unchecked_output("date"); - print STDERR " - GENERATE TRAINING EXEMPLARS\n"; - my $mergeLog="$logdir/prune-merge.log.$iteration"; - - my $score = 0; - my $icc = 0; - my $inweights="$dir/weights.$im1"; - $cmd="$MAPINPUT $dir/hgs > $dir/agenda.$im1"; - print STDERR "COMMAND:\n$cmd\n"; - check_call($cmd); - check_call("mkdir -p $dir/splag.$im1"); - $cmd="split -a 3 -l $lines_per_mapper $dir/agenda.$im1 $dir/splag.$im1/mapinput."; - print STDERR "COMMAND:\n$cmd\n"; - check_call($cmd); - opendir(DIR, "$dir/splag.$im1") or die "Can't open directory: $!"; - my @shards = grep { /^mapinput\./ } readdir(DIR); - closedir DIR; - die "No shards!" unless scalar @shards > 0; - my $joblist = ""; - my $nmappers = 0; - @cleanupcmds = (); - my %o2i = (); - my $first_shard = 1; - my $mkfile; # only used with makefiles - my $mkfilename; - if ($use_make) { - $mkfilename = "$dir/splag.$im1/domap.mk"; - open $mkfile, ">$mkfilename" or die "Couldn't write $mkfilename: $!"; - print $mkfile "all: $dir/splag.$im1/map.done\n\n"; - } - my @mkouts = (); # only used with makefiles - my @mapoutputs = (); - for my $shard (@shards) { - my $mapoutput = $shard; - my $client_name = $shard; - $client_name =~ s/mapinput.//; - $client_name = "pro.$client_name"; - $mapoutput =~ s/mapinput/mapoutput/; - push @mapoutputs, "$dir/splag.$im1/$mapoutput"; - $o2i{"$dir/splag.$im1/$mapoutput"} = "$dir/splag.$im1/$shard"; - my $script = "$MAPPER -s $srcFile -m $metric $refs_comma_sep -w $inweights -K $dir/kbest < $dir/splag.$im1/$shard > $dir/splag.$im1/$mapoutput"; - if ($use_make) { - my $script_file = "$dir/scripts/map.$shard"; - open F, ">$script_file" or die "Can't write $script_file: $!"; - print F "#!/bin/bash\n"; - print F "$script\n"; - close F; - my $output = "$dir/splag.$im1/$mapoutput"; - push @mkouts, $output; - chmod(0755, $script_file) or die "Can't chmod $script_file: $!"; - if ($first_shard) { print STDERR "$script\n"; $first_shard=0; } - print $mkfile "$output: $dir/splag.$im1/$shard\n\t$script_file\n\n"; - } else { - my $script_file = "$dir/scripts/map.$shard"; - open F, ">$script_file" or die "Can't write $script_file: $!"; - print F "$script\n"; - close F; - if ($first_shard) { print STDERR "$script\n"; $first_shard=0; } - - $nmappers++; - my $qcmd = "$QSUB_CMD -N $client_name -o /dev/null -e $logdir/$client_name.ER $script_file"; - my $jobid = check_output("$qcmd"); - chomp $jobid; - $jobid =~ s/^(\d+)(.*?)$/\1/g; - $jobid =~ s/^Your job (\d+) .*$/\1/; - push(@cleanupcmds, "qdel $jobid 2> /dev/null"); - print STDERR " $jobid"; - if ($joblist == "") { $joblist = $jobid; } - else {$joblist = $joblist . "\|" . $jobid; } - } - } - my @dev_outs = (); - my @devtest_outs = (); - if ($tune_regularizer) { - for (my $i = 0; $i < scalar @mapoutputs; $i++) { - if ($i % 3 == 1) { - push @devtest_outs, $mapoutputs[$i]; - } else { - push @dev_outs, $mapoutputs[$i]; - } - } - if (scalar @devtest_outs == 0) { - die "Not enough training instances for regularization tuning! Rerun without --tune-regularizer\n"; - } - } else { - @dev_outs = @mapoutputs; - } - if ($use_make) { - print $mkfile "$dir/splag.$im1/map.done: @mkouts\n\ttouch $dir/splag.$im1/map.done\n\n"; - close $mkfile; - my $mcmd = "make -j $jobs -f $mkfilename"; - print STDERR "\nExecuting: $mcmd\n"; - check_call($mcmd); - } else { - print STDERR "\nLaunched $nmappers mappers.\n"; - sleep 8; - print STDERR "Waiting for mappers to complete...\n"; - while ($nmappers > 0) { - sleep 5; - my @livejobs = grep(/$joblist/, split(/\n/, unchecked_output("qstat | grep -v ' C '"))); - $nmappers = scalar @livejobs; - } - print STDERR "All mappers complete.\n"; - } - my $tol = 0; - my $til = 0; - my $dev_test_file = "$dir/splag.$im1/devtest.gz"; - if ($tune_regularizer) { - my $cmd = "cat @devtest_outs | gzip > $dev_test_file"; - check_bash_call($cmd); - die "Can't find file $dev_test_file" unless -f $dev_test_file; - } - #print STDERR "MO: @mapoutputs\n"; - for my $mo (@mapoutputs) { - #my $olines = get_lines($mo); - #my $ilines = get_lines($o2i{$mo}); - #die "$mo: no training instances generated!" if $olines == 0; - } - print STDERR "\nRUNNING CLASSIFIER (REDUCER)\n"; - print STDERR unchecked_output("date"); - $cmd="cat @dev_outs | $REDUCER -w $dir/weights.$im1 -C $reg -y $reg_previous --interpolate_with_weights $psi"; - if ($tune_regularizer) { - $cmd .= " -T -t $dev_test_file"; - } - $cmd .= " > $dir/weights.$iteration"; - print STDERR "COMMAND:\n$cmd\n"; - check_bash_call($cmd); - $lastWeightsFile = "$dir/weights.$iteration"; - if ($tune_regularizer) { - open W, "<$lastWeightsFile" or die "Can't read $lastWeightsFile: $!"; - my $line = ; - close W; - my ($sharp, $label, $nreg) = split /\s|=/, $line; - print STDERR "REGULARIZATION STRENGTH ($label) IS $nreg\n"; - $reg = $nreg; - # only tune regularizer on first iteration? - $tune_regularizer = 0; - } - $lastPScore = $score; - $iteration++; - print STDERR "\n==========\n"; -} - -print STDERR "\nFINAL WEIGHTS: $lastWeightsFile\n(Use -w with the decoder)\n\n"; - -print STDOUT "$lastWeightsFile\n"; - -exit 0; - -sub get_lines { - my $fn = shift @_; - open FL, "<$fn" or die "Couldn't read $fn: $!"; - my $lc = 0; - while() { $lc++; } - return $lc; -} - -sub get_comma_sep_refs { - my ($r,$p) = @_; - my $o = check_output("echo $p"); - chomp $o; - my @files = split /\s+/, $o; - return "-$r " . join(" -$r ", @files); -} - -sub read_weights_file { - my ($file) = @_; - open F, "<$file" or die "Couldn't read $file: $!"; - my @r = (); - my $pm = -1; - while() { - next if /^#/; - next if /^\s*$/; - chomp; - if (/^(.+)\s+(.+)$/) { - my $m = $1; - my $w = $2; - die "Weights out of order: $m <= $pm" unless $m > $pm; - push @r, $w; - } else { - warn "Unexpected feature name in weight file: $_"; - } - } - close F; - return join ' ', @r; -} - -# subs -sub write_config { - my $fh = shift; - my $cleanup = "yes"; - if ($disable_clean) {$cleanup = "no";} - - print $fh "\n"; - print $fh "DECODER: $decoder\n"; - print $fh "INI FILE: $iniFile\n"; - print $fh "WORKING DIR: $dir\n"; - print $fh "SOURCE (DEV): $srcFile\n"; - print $fh "REFS (DEV): $refFiles\n"; - print $fh "EVAL METRIC: $metric\n"; - print $fh "MAX ITERATIONS: $max_iterations\n"; - print $fh "JOBS: $jobs\n"; - print $fh "HEAD NODE: $host\n"; - print $fh "PMEM (DECODING): $pmem\n"; - print $fh "CLEANUP: $cleanup\n"; -} - -sub update_weights_file { - my ($neww, $rfn, $rpts) = @_; - my @feats = @$rfn; - my @pts = @$rpts; - my $num_feats = scalar @feats; - my $num_pts = scalar @pts; - die "$num_feats (num_feats) != $num_pts (num_pts)" unless $num_feats == $num_pts; - open G, ">$neww" or die; - for (my $i = 0; $i < $num_feats; $i++) { - my $f = $feats[$i]; - my $lambda = $pts[$i]; - print G "$f $lambda\n"; - } - close G; -} - -sub enseg { - my $src = shift; - my $newsrc = shift; - open(SRC, $src); - open(NEWSRC, ">$newsrc"); - my $i=0; - while (my $line=){ - chomp $line; - if ($line =~ /^\s* tags, you must include a zero-based id attribute"; - } - } else { - print NEWSRC "$line\n"; - } - $i++; - } - close SRC; - close NEWSRC; - die "Empty dev set!" if ($i == 0); -} - -sub print_help { - - my $executable = check_output("basename $0"); chomp $executable; - print << "Help"; - -Usage: $executable [options] - - $executable [options] - Runs a complete PRO optimization using the ini file specified. - -Required: - - --ref-files - Dev set ref files. This option takes only a single string argument. - To use multiple files (including file globbing), this argument should - be quoted. - - --source-file - Dev set source file. - - --weights - Initial weights file (use empty file to start from 0) - -General options: - - --help - Print this message and exit. - - --max-iterations - Maximum number of iterations to run. If not specified, defaults - to $default_max_iter. - - --metric - Metric to optimize. - Example values: IBM_BLEU, NIST_BLEU, Koehn_BLEU, TER, Combi - - --pass-suffix - If the decoder is doing multi-pass decoding, the pass suffix "2", - "3", etc., is used to control what iteration of weights is set. - - --workdir - Directory for intermediate and output files. If not specified, the - name is derived from the ini filename. Assuming that the ini - filename begins with the decoder name and ends with ini, the default - name of the working directory is inferred from the middle part of - the filename. E.g. an ini file named decoder.foo.ini would have - a default working directory name foo. - -Regularization options: - - --reg - l2 regularization strength [default=500]. The greater this value, - the closer to zero the weights will be. - - --reg-previous - l2 penalty for moving away from the weights from the previous - iteration. [default=5000]. The greater this value, the closer - to the previous iteration's weights the next iteration's weights - will be. - -Job control options: - - --jobs - Number of decoder processes to run in parallel. [default=$default_jobs] - - --qsub - Use qsub to run jobs in parallel (qsub must be configured in - environment/LocalEnvironment.pm) - - --pmem - Amount of physical memory requested for parallel decoding jobs - (used with qsub requests only) - -Deprecated options: - - --interpolate-with-weights - [deprecated] At each iteration the resulting weights are - interpolated with the weights from the previous iteration, with - this factor. [default=1.0, i.e., no effect] - -Help -} - -sub convert { - my ($str) = @_; - my @ps = split /;/, $str; - my %dict = (); - for my $p (@ps) { - my ($k, $v) = split /=/, $p; - $dict{$k} = $v; - } - return %dict; -} - - -sub cmdline { - return join ' ',($0,@ORIG_ARGV); -} - -#buggy: last arg gets quoted sometimes? -my $is_shell_special=qr{[ \t\n\\><|&;"'`~*?{}$!()]}; -my $shell_escape_in_quote=qr{[\\"\$`!]}; - -sub escape_shell { - my ($arg)=@_; - return undef unless defined $arg; - if ($arg =~ /$is_shell_special/) { - $arg =~ s/($shell_escape_in_quote)/\\$1/g; - return "\"$arg\""; - } - return $arg; -} - -sub escaped_shell_args { - return map {local $_=$_;chomp;escape_shell($_)} @_; -} - -sub escaped_shell_args_str { - return join ' ',&escaped_shell_args(@_); -} - -sub escaped_cmdline { - return "$0 ".&escaped_shell_args_str(@ORIG_ARGV); -} diff --git a/pro-train/mr_pro_generate_mapper_input.pl b/pro-train/mr_pro_generate_mapper_input.pl deleted file mode 100755 index b30fc4fd..00000000 --- a/pro-train/mr_pro_generate_mapper_input.pl +++ /dev/null @@ -1,18 +0,0 @@ -#!/usr/bin/perl -w -use strict; - -die "Usage: $0 HG_DIR\n" unless scalar @ARGV == 1; -my $d = shift @ARGV; -die "Can't find directory $d" unless -d $d; - -opendir(DIR, $d) or die "Can't read $d: $!"; -my @hgs = grep { /\.gz$/ } readdir(DIR); -closedir DIR; - -for my $hg (@hgs) { - my $file = $hg; - my $id = $hg; - $id =~ s/(\.json)?\.gz//; - print "$d/$file $id\n"; -} - diff --git a/pro-train/mr_pro_map.cc b/pro-train/mr_pro_map.cc deleted file mode 100644 index eef40b8a..00000000 --- a/pro-train/mr_pro_map.cc +++ /dev/null @@ -1,201 +0,0 @@ -#include -#include -#include -#include -#include - -#include -#include -#include -#include - -#include "candidate_set.h" -#include "sampler.h" -#include "filelib.h" -#include "stringlib.h" -#include "weights.h" -#include "inside_outside.h" -#include "hg_io.h" -#include "ns.h" -#include "ns_docscorer.h" - -// This is Figure 4 (Algorithm Sampler) from Hopkins&May (2011) - -using namespace std; -namespace po = boost::program_options; - -boost::shared_ptr rng; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("reference,r",po::value >(), "[REQD] Reference translation (tokenized text)") - ("weights,w",po::value(), "[REQD] Weights files from current iterations") - ("kbest_repository,K",po::value()->default_value("./kbest"),"K-best list repository (directory)") - ("input,i",po::value()->default_value("-"), "Input file to map (- is STDIN)") - ("source,s",po::value()->default_value(""), "Source file (ignored, except for AER)") - ("evaluation_metric,m",po::value()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") - ("kbest_size,k",po::value()->default_value(1500u), "Top k-hypotheses to extract") - ("candidate_pairs,G", po::value()->default_value(5000u), "Number of pairs to sample per hypothesis (Gamma)") - ("best_pairs,X", po::value()->default_value(50u), "Number of pairs, ranked by magnitude of objective delta, to retain (Xi)") - ("random_seed,S", po::value(), "Random seed (if not specified, /dev/random will be used)") - ("help,h", "Help"); - po::options_description dcmdline_options; - dcmdline_options.add(opts); - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - bool flag = false; - if (!conf->count("reference")) { - cerr << "Please specify one or more references using -r \n"; - flag = true; - } - if (!conf->count("weights")) { - cerr << "Please specify weights using -w \n"; - flag = true; - } - if (flag || conf->count("help")) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -struct ThresholdAlpha { - explicit ThresholdAlpha(double t = 0.05) : threshold(t) {} - double operator()(double mag) const { - if (mag < threshold) return 0.0; else return 1.0; - } - const double threshold; -}; - -struct TrainingInstance { - TrainingInstance(const SparseVector& feats, bool positive, float diff) : x(feats), y(positive), gdiff(diff) {} - SparseVector x; -#undef DEBUGGING_PRO -#ifdef DEBUGGING_PRO - vector a; - vector b; -#endif - bool y; - float gdiff; -}; -#ifdef DEBUGGING_PRO -ostream& operator<<(ostream& os, const TrainingInstance& d) { - return os << d.gdiff << " y=" << d.y << "\tA:" << TD::GetString(d.a) << "\n\tB: " << TD::GetString(d.b) << "\n\tX: " << d.x; -} -#endif - -struct DiffOrder { - bool operator()(const TrainingInstance& a, const TrainingInstance& b) const { - return a.gdiff > b.gdiff; - } -}; - -void Sample(const unsigned gamma, - const unsigned xi, - const training::CandidateSet& J_i, - const EvaluationMetric* metric, - vector* pv) { - const bool invert_score = metric->IsErrorMetric(); - vector v1, v2; - float avg_diff = 0; - for (unsigned i = 0; i < gamma; ++i) { - const size_t a = rng->inclusive(0, J_i.size() - 1)(); - const size_t b = rng->inclusive(0, J_i.size() - 1)(); - if (a == b) continue; - float ga = metric->ComputeScore(J_i[a].eval_feats); - float gb = metric->ComputeScore(J_i[b].eval_feats); - bool positive = gb < ga; - if (invert_score) positive = !positive; - const float gdiff = fabs(ga - gb); - if (!gdiff) continue; - avg_diff += gdiff; - SparseVector xdiff = (J_i[a].fmap - J_i[b].fmap).erase_zeros(); - if (xdiff.empty()) { - cerr << "Empty diff:\n " << TD::GetString(J_i[a].ewords) << endl << "x=" << J_i[a].fmap << endl; - cerr << " " << TD::GetString(J_i[b].ewords) << endl << "x=" << J_i[b].fmap << endl; - continue; - } - v1.push_back(TrainingInstance(xdiff, positive, gdiff)); -#ifdef DEBUGGING_PRO - v1.back().a = J_i[a].hyp; - v1.back().b = J_i[b].hyp; - cerr << "N: " << v1.back() << endl; -#endif - } - avg_diff /= v1.size(); - - for (unsigned i = 0; i < v1.size(); ++i) { - double p = 1.0 / (1.0 + exp(-avg_diff - v1[i].gdiff)); - // cerr << "avg_diff=" << avg_diff << " gdiff=" << v1[i].gdiff << " p=" << p << endl; - if (rng->next() < p) v2.push_back(v1[i]); - } - vector::iterator mid = v2.begin() + xi; - if (xi > v2.size()) mid = v2.end(); - partial_sort(v2.begin(), mid, v2.end(), DiffOrder()); - copy(v2.begin(), mid, back_inserter(*pv)); -#ifdef DEBUGGING_PRO - if (v2.size() >= 5) { - for (int i =0; i < (mid - v2.begin()); ++i) { - cerr << v2[i] << endl; - } - cerr << pv->back() << endl; - } -#endif -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - if (conf.count("random_seed")) - rng.reset(new MT19937(conf["random_seed"].as())); - else - rng.reset(new MT19937); - const string evaluation_metric = conf["evaluation_metric"].as(); - - EvaluationMetric* metric = EvaluationMetric::Instance(evaluation_metric); - DocumentScorer ds(metric, conf["reference"].as >()); - cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; - - Hypergraph hg; - string last_file; - ReadFile in_read(conf["input"].as()); - istream &in=*in_read.stream(); - const unsigned kbest_size = conf["kbest_size"].as(); - const unsigned gamma = conf["candidate_pairs"].as(); - const unsigned xi = conf["best_pairs"].as(); - string weightsf = conf["weights"].as(); - vector weights; - Weights::InitFromFile(weightsf, &weights); - string kbest_repo = conf["kbest_repository"].as(); - MkDirP(kbest_repo); - while(in) { - vector v; - string line; - getline(in, line); - if (line.empty()) continue; - istringstream is(line); - int sent_id; - string file; - // path-to-file (JSON) sent_id - is >> file >> sent_id; - ReadFile rf(file); - ostringstream os; - training::CandidateSet J_i; - os << kbest_repo << "/kbest." << sent_id << ".txt.gz"; - const string kbest_file = os.str(); - if (FileExists(kbest_file)) - J_i.ReadFromFile(kbest_file); - HypergraphIO::ReadFromJSON(rf.stream(), &hg); - hg.Reweight(weights); - J_i.AddKBestCandidates(hg, kbest_size, ds[sent_id]); - J_i.WriteToFile(kbest_file); - - Sample(gamma, xi, J_i, metric, &v); - for (unsigned i = 0; i < v.size(); ++i) { - const TrainingInstance& vi = v[i]; - cout << vi.y << "\t" << vi.x << endl; - cout << (!vi.y) << "\t" << (vi.x * -1.0) << endl; - } - } - return 0; -} - diff --git a/pro-train/mr_pro_reduce.cc b/pro-train/mr_pro_reduce.cc deleted file mode 100644 index 5ef9b470..00000000 --- a/pro-train/mr_pro_reduce.cc +++ /dev/null @@ -1,286 +0,0 @@ -#include -#include -#include -#include -#include - -#include -#include - -#include "filelib.h" -#include "weights.h" -#include "sparse_vector.h" -#include "optimize.h" -#include "liblbfgs/lbfgs++.h" - -using namespace std; -namespace po = boost::program_options; - -// since this is a ranking model, there should be equal numbers of -// positive and negative examples, so the bias should be 0 -static const double MAX_BIAS = 1e-10; - -void InitCommandLine(int argc, char** argv, po::variables_map* conf) { - po::options_description opts("Configuration options"); - opts.add_options() - ("weights,w", po::value(), "Weights from previous iteration (used as initialization and interpolation") - ("regularization_strength,C",po::value()->default_value(500.0), "l2 regularization strength") - ("l1",po::value()->default_value(0.0), "l1 regularization strength") - ("regularize_to_weights,y",po::value()->default_value(5000.0), "Differences in learned weights to previous weights are penalized with an l2 penalty with this strength; 0.0 = no effect") - ("memory_buffers,m",po::value()->default_value(100), "Number of memory buffers (LBFGS)") - ("min_reg,r",po::value()->default_value(0.01), "When tuning (-T) regularization strength, minimum regularization strenght") - ("max_reg,R",po::value()->default_value(1e6), "When tuning (-T) regularization strength, maximum regularization strenght") - ("testset,t",po::value(), "Optional held-out test set") - ("tune_regularizer,T", "Use the held out test set (-t) to tune the regularization strength") - ("interpolate_with_weights,p",po::value()->default_value(1.0), "[deprecated] Output weights are p*w + (1-p)*w_prev; 1.0 = no effect") - ("help,h", "Help"); - po::options_description dcmdline_options; - dcmdline_options.add(opts); - po::store(parse_command_line(argc, argv, dcmdline_options), *conf); - if (conf->count("help")) { - cerr << dcmdline_options << endl; - exit(1); - } -} - -void ParseSparseVector(string& line, size_t cur, SparseVector* out) { - SparseVector& x = *out; - size_t last_start = cur; - size_t last_comma = string::npos; - while(cur <= line.size()) { - if (line[cur] == ' ' || cur == line.size()) { - if (!(cur > last_start && last_comma != string::npos && cur > last_comma)) { - cerr << "[ERROR] " << line << endl << " position = " << cur << endl; - exit(1); - } - const int fid = FD::Convert(line.substr(last_start, last_comma - last_start)); - if (cur < line.size()) line[cur] = 0; - const weight_t val = strtod(&line[last_comma + 1], NULL); - x.set_value(fid, val); - - last_comma = string::npos; - last_start = cur+1; - } else { - if (line[cur] == '=') - last_comma = cur; - } - ++cur; - } -} - -void ReadCorpus(istream* pin, vector > >* corpus) { - istream& in = *pin; - corpus->clear(); - bool flag = false; - int lc = 0; - string line; - SparseVector x; - while(getline(in, line)) { - ++lc; - if (lc % 1000 == 0) { cerr << '.'; flag = true; } - if (lc % 40000 == 0) { cerr << " [" << lc << "]\n"; flag = false; } - if (line.empty()) continue; - const size_t ks = line.find("\t"); - assert(string::npos != ks); - assert(ks == 1); - const bool y = line[0] == '1'; - x.clear(); - ParseSparseVector(line, ks + 1, &x); - corpus->push_back(make_pair(y, x)); - } - if (flag) cerr << endl; -} - -void GradAdd(const SparseVector& v, const double scale, weight_t* acc) { - for (SparseVector::const_iterator it = v.begin(); - it != v.end(); ++it) { - acc[it->first] += it->second * scale; - } -} - -double ApplyRegularizationTerms(const double C, - const double T, - const vector& weights, - const vector& prev_weights, - weight_t* g) { - double reg = 0; - for (size_t i = 0; i < weights.size(); ++i) { - const double prev_w_i = (i < prev_weights.size() ? prev_weights[i] : 0.0); - const double& w_i = weights[i]; - reg += C * w_i * w_i; - g[i] += 2 * C * w_i; - - const double diff_i = w_i - prev_w_i; - reg += T * diff_i * diff_i; - g[i] += 2 * T * diff_i; - } - return reg; -} - -double TrainingInference(const vector& x, - const vector > >& corpus, - weight_t* g = NULL) { - double cll = 0; - for (int i = 0; i < corpus.size(); ++i) { - const double dotprod = corpus[i].second.dot(x) + (x.size() ? x[0] : weight_t()); // x[0] is bias - double lp_false = dotprod; - double lp_true = -dotprod; - if (0 < lp_true) { - lp_true += log1p(exp(-lp_true)); - lp_false = log1p(exp(lp_false)); - } else { - lp_true = log1p(exp(lp_true)); - lp_false += log1p(exp(-lp_false)); - } - lp_true*=-1; - lp_false*=-1; - if (corpus[i].first) { // true label - cll -= lp_true; - if (g) { - // g -= corpus[i].second * exp(lp_false); - GradAdd(corpus[i].second, -exp(lp_false), g); - g[0] -= exp(lp_false); // bias - } - } else { // false label - cll -= lp_false; - if (g) { - // g += corpus[i].second * exp(lp_true); - GradAdd(corpus[i].second, exp(lp_true), g); - g[0] += exp(lp_true); // bias - } - } - } - return cll; -} - -struct ProLoss { - ProLoss(const vector > >& tr, - const vector > >& te, - const double c, - const double t, - const vector& px) : training(tr), testing(te), C(c), T(t), prev_x(px){} - double operator()(const vector& x, double* g) const { - fill(g, g + x.size(), 0.0); - double cll = TrainingInference(x, training, g); - tppl = 0; - if (testing.size()) - tppl = pow(2.0, TrainingInference(x, testing, g) / (log(2) * testing.size())); - double ppl = cll / log(2); - ppl /= training.size(); - ppl = pow(2.0, ppl); - double reg = ApplyRegularizationTerms(C, T, x, prev_x, g); - return cll + reg; - } - const vector > >& training, testing; - const double C, T; - const vector& prev_x; - mutable double tppl; -}; - -// return held-out log likelihood -double LearnParameters(const vector > >& training, - const vector > >& testing, - const double C, - const double C1, - const double T, - const unsigned memory_buffers, - const vector& prev_x, - vector* px) { - assert(px->size() == prev_x.size()); - ProLoss loss(training, testing, C, T, prev_x); - LBFGS lbfgs(px, loss, memory_buffers, C1); - lbfgs.MinimizeFunction(); - return loss.tppl; -} - -int main(int argc, char** argv) { - po::variables_map conf; - InitCommandLine(argc, argv, &conf); - string line; - vector > > training, testing; - const bool tune_regularizer = conf.count("tune_regularizer"); - if (tune_regularizer && !conf.count("testset")) { - cerr << "--tune_regularizer requires --testset to be set\n"; - return 1; - } - const double min_reg = conf["min_reg"].as(); - const double max_reg = conf["max_reg"].as(); - double C = conf["regularization_strength"].as(); // will be overridden if parameter is tuned - double C1 = conf["l1"].as(); // will be overridden if parameter is tuned - const double T = conf["regularize_to_weights"].as(); - assert(C >= 0.0); - assert(min_reg >= 0.0); - assert(max_reg >= 0.0); - assert(max_reg > min_reg); - const double psi = conf["interpolate_with_weights"].as(); - if (psi < 0.0 || psi > 1.0) { cerr << "Invalid interpolation weight: " << psi << endl; return 1; } - ReadCorpus(&cin, &training); - if (conf.count("testset")) { - ReadFile rf(conf["testset"].as()); - ReadCorpus(rf.stream(), &testing); - } - cerr << "Number of features: " << FD::NumFeats() << endl; - - vector x, prev_x; // x[0] is bias - if (conf.count("weights")) { - Weights::InitFromFile(conf["weights"].as(), &x); - x.resize(FD::NumFeats()); - prev_x = x; - } else { - x.resize(FD::NumFeats()); - prev_x = x; - } - cerr << " Number of features: " << x.size() << endl; - cerr << "Number of training examples: " << training.size() << endl; - cerr << "Number of testing examples: " << testing.size() << endl; - double tppl = 0.0; - vector > sp; - vector smoothed; - if (tune_regularizer) { - C = min_reg; - const double steps = 18; - double sweep_factor = exp((log(max_reg) - log(min_reg)) / steps); - cerr << "SWEEP FACTOR: " << sweep_factor << endl; - while(C < max_reg) { - cerr << "C=" << C << "\tT=" <(), prev_x, &x); - sp.push_back(make_pair(C, tppl)); - C *= sweep_factor; - } - smoothed.resize(sp.size(), 0); - smoothed[0] = sp[0].second; - smoothed.back() = sp.back().second; - for (int i = 1; i < sp.size()-1; ++i) { - double prev = sp[i-1].second; - double next = sp[i+1].second; - double cur = sp[i].second; - smoothed[i] = (prev*0.2) + cur * 0.6 + (0.2*next); - } - double best_ppl = 9999999; - unsigned best_i = 0; - for (unsigned i = 0; i < sp.size(); ++i) { - if (smoothed[i] < best_ppl) { - best_ppl = smoothed[i]; - best_i = i; - } - } - C = sp[best_i].first; - } // tune regularizer - tppl = LearnParameters(training, testing, C, C1, T, conf["memory_buffers"].as(), prev_x, &x); - if (conf.count("weights")) { - for (int i = 1; i < x.size(); ++i) { - x[i] = (x[i] * psi) + prev_x[i] * (1.0 - psi); - } - } - cout.precision(15); - cout << "# C=" << C << "\theld out perplexity="; - if (tppl) { cout << tppl << endl; } else { cout << "N/A\n"; } - if (sp.size()) { - cout << "# Parameter sweep:\n"; - for (int i = 0; i < sp.size(); ++i) { - cout << "# " << sp[i].first << "\t" << sp[i].second << "\t" << smoothed[i] << endl; - } - } - Weights::WriteToFile("-", x); - return 0; -} -- cgit v1.2.3