From 3044d6d1c6d428e8d06c255e3a2d739bcd187679 Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Fri, 29 Jun 2012 18:45:26 -0700 Subject: add option for entropy optimization --- minrisk/minrisk_optimize.cc | 67 +++++++++++++++++++++++++++++++++++++++------ 1 file changed, 58 insertions(+), 9 deletions(-) (limited to 'minrisk') diff --git a/minrisk/minrisk_optimize.cc b/minrisk/minrisk_optimize.cc index 6e651994..da8b5260 100644 --- a/minrisk/minrisk_optimize.cc +++ b/minrisk/minrisk_optimize.cc @@ -17,6 +17,7 @@ #include "ns_docscorer.h" #include "candidate_set.h" #include "risk.h" +#include "entropy.h" using namespace std; namespace po = boost::program_options; @@ -28,6 +29,9 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { ("weights,w",po::value(), "[REQD] Weights files from current iterations") ("input,i",po::value()->default_value("-"), "Input file to map (- is STDIN)") ("evaluation_metric,m",po::value()->default_value("IBM_BLEU"), "Evaluation metric (ibm_bleu, koehn_bleu, nist_bleu, ter, meteor, etc.)") + ("temperature,T",po::value()->default_value(0.0), "Temperature parameter for objective (>0 increases the entropy)") + ("l1_strength,C",po::value()->default_value(0.0), "L1 regularization strength") + ("memory_buffers,M",po::value()->default_value(20), "Memory buffers used in LBFGS") ("kbest_repository,R",po::value(), "Accumulate k-best lists from previous iterations (parameter is path to repository)") ("kbest_size,k",po::value()->default_value(500u), "Top k-hypotheses to extract") ("help,h", "Help"); @@ -52,36 +56,80 @@ void InitCommandLine(int argc, char** argv, po::variables_map* conf) { EvaluationMetric* metric = NULL; struct RiskObjective { - explicit RiskObjective(const vector& tr) : training(tr) {} + explicit RiskObjective(const vector& tr, const double temp) : training(tr), T(temp) {} double operator()(const vector& x, double* g) const { fill(g, g + x.size(), 0.0); double obj = 0; + double h = 0; for (unsigned i = 0; i < training.size(); ++i) { training::CandidateSetRisk risk(training[i], *metric); - SparseVector tg; + training::CandidateSetEntropy entropy(training[i]); + SparseVector tg, hg; double r = risk(x, &tg); + double hh = entropy(x, &hg); + h += hh; obj += r; for (SparseVector::iterator it = tg.begin(); it != tg.end(); ++it) g[it->first] += it->second; + if (T) { + for (SparseVector::iterator it = hg.begin(); it != hg.end(); ++it) + g[it->first] += T * it->second; + } } - cerr << (1-(obj / training.size())) << endl; - return obj; + cerr << (1-(obj / training.size())) << " H=" << h << endl; + return obj - T * h; } const vector& training; + const double T; // temperature for entropy regularization }; double LearnParameters(const vector& training, + const double temp, // > 0 increases the entropy, < 0 decreases the entropy const double C1, const unsigned memory_buffers, vector* px) { - RiskObjective obj(training); + RiskObjective obj(training, temp); LBFGS lbfgs(px, obj, memory_buffers, C1); lbfgs.MinimizeFunction(); return 0; } -// runs lines 4--15 of rampion algorithm +#if 0 +struct FooLoss { + double operator()(const vector& x, double* g) const { + fill(g, g + x.size(), 0.0); + training::CandidateSet cs; + training::CandidateSetEntropy cse(cs); + cs.cs.resize(3); + cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0); + cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0); + cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0); + cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5); + SparseVector xx; + double h = cse(x, &xx); + cerr << cse(x, &xx) << endl; cerr << "G: " << xx << endl; + for (SparseVector::iterator i = xx.begin(); i != xx.end(); ++i) + g[i->first] += i->second; + return -h; + } +}; +#endif + int main(int argc, char** argv) { +#if 0 + training::CandidateSet cs; + training::CandidateSetEntropy cse(cs); + cs.cs.resize(3); + cs.cs[0].fmap.set_value(FD::Convert("F1"), -1.0); + cs.cs[1].fmap.set_value(FD::Convert("F2"), 1.0); + cs.cs[2].fmap.set_value(FD::Convert("F1"), 2.0); + cs.cs[2].fmap.set_value(FD::Convert("F2"), 0.5); + FooLoss foo; + vector ww(FD::NumFeats()); ww[FD::Convert("F1")] = 1.0; + LBFGS lbfgs(&ww, foo, 100, 0.0); + lbfgs.MinimizeFunction(); + return 1; +#endif po::variables_map conf; InitCommandLine(argc, argv, &conf); const string evaluation_metric = conf["evaluation_metric"].as(); @@ -89,8 +137,6 @@ int main(int argc, char** argv) { metric = EvaluationMetric::Instance(evaluation_metric); DocumentScorer ds(metric, conf["reference"].as >()); cerr << "Loaded " << ds.size() << " references for scoring with " << evaluation_metric << endl; - double goodsign = -1; - double badsign = -goodsign; Hypergraph hg; string last_file; @@ -141,7 +187,10 @@ int main(int argc, char** argv) { cerr << "\nHypergraphs loaded.\n"; weights.resize(FD::NumFeats()); - LearnParameters(kis, 0.0, 100, &weights); + double c1 = conf["l1_strength"].as(); + double temp = conf["temperature"].as(); + unsigned m = conf["memory_buffers"].as(); + LearnParameters(kis, temp, c1, m, &weights); Weights::WriteToFile("-", weights); return 0; } -- cgit v1.2.3