From e26434979adc33bd949566ba7bf02dff64e80a3e Mon Sep 17 00:00:00 2001 From: Chris Dyer Date: Tue, 2 Oct 2012 00:19:43 -0400 Subject: cdec cleanup, remove bayesian stuff, parsing stuff --- gi/pf/backward.cc | 89 ------------------------------------------------------- 1 file changed, 89 deletions(-) delete mode 100644 gi/pf/backward.cc (limited to 'gi/pf/backward.cc') diff --git a/gi/pf/backward.cc b/gi/pf/backward.cc deleted file mode 100644 index b92629fd..00000000 --- a/gi/pf/backward.cc +++ /dev/null @@ -1,89 +0,0 @@ -#include "backward.h" - -#include -#include - -#include "array2d.h" -#include "reachability.h" -#include "base_distributions.h" - -using namespace std; - -BackwardEstimator::BackwardEstimator(const string& s2t, - const string& t2s) : m1(new Model1(s2t)), m1inv(new Model1(t2s)) {} - -BackwardEstimator::~BackwardEstimator() { - delete m1; m1 = NULL; - delete m1inv; m1inv = NULL; -} - -float BackwardEstimator::ComputeBackwardProb(const std::vector& src, - const std::vector& trg, - unsigned src_covered, - unsigned trg_covered, - double s2t_ratio) const { - if (src_covered == src.size() || trg_covered == trg.size()) { - assert(src_covered == src.size()); - assert(trg_covered == trg.size()); - return 0; - } - static const WordID kNULL = TD::Convert(""); - const prob_t uniform_alignment(1.0 / (src.size() - src_covered + 1)); - // TODO factor in expected length ratio - prob_t e; e.logeq(Md::log_poisson(trg.size() - trg_covered, (src.size() - src_covered) * s2t_ratio)); // p(trg len remaining | src len remaining) - for (unsigned j = trg_covered; j < trg.size(); ++j) { - prob_t p = (*m1)(kNULL, trg[j]) + prob_t(1e-12); - for (unsigned i = src_covered; i < src.size(); ++i) - p += (*m1)(src[i], trg[j]); - if (p.is_0()) { - cerr << "ERROR: p(" << TD::Convert(trg[j]) << " | " << TD::GetString(src) << ") = 0!\n"; - assert(!"failed"); - } - p *= uniform_alignment; - e *= p; - } - // TODO factor in expected length ratio - const prob_t inv_uniform(1.0 / (trg.size() - trg_covered + 1.0)); - prob_t inv; - inv.logeq(Md::log_poisson(src.size() - src_covered, (trg.size() - trg_covered) / s2t_ratio)); - for (unsigned i = src_covered; i < src.size(); ++i) { - prob_t p = (*m1inv)(kNULL, src[i]) + prob_t(1e-12); - for (unsigned j = trg_covered; j < trg.size(); ++j) - p += (*m1inv)(trg[j], src[i]); - if (p.is_0()) { - cerr << "ERROR: p_inv(" << TD::Convert(src[i]) << " | " << TD::GetString(trg) << ") = 0!\n"; - assert(!"failed"); - } - p *= inv_uniform; - inv *= p; - } - return (log(e) + log(inv)) / 2; -} - -void BackwardEstimator::InitializeGrid(const vector& src, - const vector& trg, - const Reachability& r, - double s2t_ratio, - float* grid) const { - queue > q; - q.push(make_pair(0,0)); - Array2D done(src.size()+1, trg.size()+1, false); - //cerr << TD::GetString(src) << " ||| " << TD::GetString(trg) << endl; - while(!q.empty()) { - const pair n = q.front(); - q.pop(); - if (done(n.first,n.second)) continue; - done(n.first,n.second) = true; - - float lp = ComputeBackwardProb(src, trg, n.first, n.second, s2t_ratio); - if (n.first == 0 && n.second == 0) grid[0] = lp; - //cerr << " " << n.first << "," << n.second << "\t" << lp << endl; - - if (n.first == src.size() || n.second == trg.size()) continue; - const vector >& edges = r.valid_deltas[n.first][n.second]; - for (int i = 0; i < edges.size(); ++i) - q.push(make_pair(n.first + edges[i].first, n.second + edges[i].second)); - } - //static int cc = 0; ++cc; if (cc == 80) exit(1); -} - -- cgit v1.2.3